• Title/Summary/Keyword: T24 cell

Search Result 771, Processing Time 0.026 seconds

Nanoscale imaging of rat atrial myocytes by scanning ion conductance microscopy reveals heterogeneity of T-tubule openings and ultrastructure of the cell membrane

  • Park, Sun Hwa;Kim, Ami;An, Jieun;Cho, Hyun Sung;Kang, Tong Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.529-543
    • /
    • 2020
  • In contrast to ventricular myocytes, the structural and functional importance of atrial transverse tubules (T-tubules) is not fully understood. Therefore, we investigated the ultrastructure of T-tubules of living rat atrial myocytes in comparison with ventricular myocytes. Nanoscale cell surface imaging by scanning ion conductance microscopy (SICM) was accompanied by confocal imaging of intracellular T-tubule network, and the effect of removal of T-tubules on atrial excitation-contraction coupling (EC-coupling) was observed. By SICM imaging, we classified atrial cell surface into 4 subtypes. About 38% of atrial myocytes had smooth cell surface with no clear T-tubule openings and intracellular T-tubules (smooth-type). In 33% of cells, we found a novel membrane nanostructure running in the direction of cell length and named it 'longitudinal fissures' (LFs-type). Interestingly, T-tubule openings were often found inside the LFs. About 17% of atrial cells resembled ventricular myocytes, but they had smaller T-tubule openings and a lower Z-groove ratio than the ventricle (ventricular-type). The remaining 12% of cells showed a mixed structure of each subtype (mixed-type). The LFs-, ventricular-, and mixed-type had an appreciable amount of reticular form of intracellular T-tubules. Formamide-induced detubulation effectively removed atrial T-tubules, which was confirmed by both confocal images and decreased cell capacitance. However, the LFs remained intact after detubulation. Detubulation reduced action potential duration and L-type Ca2+ channel (LTCC) density, and prolonged relaxation time of the myocytes. Taken together, we observed heterogeneity of rat atrial T-tubules and membranous ultrastructure, and the alteration of atrial EC-coupling by disruption of T-tubules.

A Study of the Inhibitory Effect of Acer tegmentosum Max. on Fibrogenesis in Hepatic Stellate Cell Line T6 (산청목(山靑木)이 간섬유화 진행 억제에 미치는 효과에 대한 연구)

  • Lee, Seung-Bo;Woo, Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.2
    • /
    • pp.346-355
    • /
    • 2010
  • Objectives : This study was performed in order to investigate the anti-fibrogenic effect of Acer tegmentosum Maxim. on r at hepatic stellate cell line T6. Materials and Methods : Hepatic stellate Cells (T6) were treated with various concentrations of distilled water Acer teg mentosum Maxim. extract for 24, 48, 72 hours. After the treatment, cell viability, proliferation, procollagen levels, mRNA of AS MA, MMP-2, collagen type 1a2 and IL-6 production were measured using MTT assay, BrdU assay, RT-PCR, procollagen typ e 1 C-peptide EIA kit and murine IL-6 ELISA development kit. Results : Cell viability of HSC-T6 decreased significantly in both 24 hours and 48 hours groups in a dose-dependant man ner. Proliferation of HSC also decreased in the same way. In the RT-PCR, mRNA expression of collagen type 1a2 and ASMA decreased in the groups which were treated with Acer tegmentosum Maxim. for 24 hours. The production of procollagen tended to decrease in a dose-dependant manner in the 24 hours treated group. IL-6 production increased under Acer tegmentosum trea tment in a dose-dependant manner in both 24 and 48 hours groups. Conclusion : These results show the possibility that Acer tegmentosum Maxim. can be an effective remedy for liver fibrosi s and liver cirrhosis.

Biological Clock and Ultradian Metabolic Oscillation in Saccharomyces cerevisiae (Saccharomyces cerevisiae의 생물시계와 초단기 대사진동)

  • Kwon, Chong Suk;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.985-991
    • /
    • 2018
  • Biological clocks are the basis of temporal control of metabolism and behavior. These clocks are characterized by autonomous free-running oscillation and temperature compensation and are found in animals, plants, and microorganisms. To date, various biological clocks have been reported. These include clocks governing hibernation, sleep/wake, heartbeat, and courtship song. These clocks can be differentiated by the period of rhythms, for example, infradian rhythms (> 24-hr period), circadian rhythms (24-hr period), and ultradian rhythms (< 24-hr period). In yeast (Saccharomyces cerevisiae), at least five different autonomous oscillations have been reported; (1) glycolytic oscillations (T = 1~30 min), (2) cell cycle-dependent oscillations (T = 2~16 hr), (3) ultradian metabolic oscillations (T = 15~50 min), (4) yeast colony oscillations (T = a few hours), and (5) circadian oscillations (T = 24 hr). In this review, we discuss studies on oscillators, pacemakers, and synchronizers, in addition to the application of biological clocks, to demonstrate the nature of autonomous oscillations, especially ultradian metabolic oscillations of S. cerevisiae.

Induction of Apoptosis by Combination Treatment with Luteolin and TRAIL in T24 Human Bladder Cancer Cells (T24 방광암세포에서 Luteolin과 TRAIL의 복합 처리에 따른 Apoptosis 유도)

  • Park, Hyun Soo;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.9
    • /
    • pp.1363-1369
    • /
    • 2013
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis by targeting cancer cells. However, some cancer cells are resistant to TRAIL-induced cytotoxicity. One method of overcoming TRAIL resistance is combination treatment with reagents to sensitize cells to TRAIL. Luteolin, a flavonoid, has been shown to have anti-cancer effects by inducing apoptosis and cell cycle arrest in various cancer cell lines in vitro. In this study, we investigated the effects of combination treatment with non-toxic concentration of TRAIL and luteolin in T24 human bladder cancer cells. Combined treatment with luteolin and TRAIL significantly inhibits cell proliferation via activation of caspases by inducing Bid truncation, up-regulation of Bax and down-regulation of X-linked inhibitor of apoptosis protein (XIAP). However, the apoptotic effects of combination treatment with luteolin and TRAIL were significantly inhibited by specific caspases inhibitors. Taken together, these results indicate that combination treatment with TRAIL and luteolin can induce apoptosis in TRAIL-resistant cancer cells through down-regulation of XIAP and modulation of tBid and Bax expression.

Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines

  • Sang-Hyun Kim;Erica Espano;Bill Thaddeus Padasas;Ju-Ho Son;Jihee Oh;Richard J. Webby;Young-Ran Lee;Chan-Su Park;Jeong-Ki Kim
    • IMMUNE NETWORK
    • /
    • v.24 no.3
    • /
    • pp.19.1-19.15
    • /
    • 2024
  • The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.

Synthesis and Characterization of π-Conjugated Polymer Based on Phthalimide Derivative and its Application for Polymer Solar Cells (프탈이미드 유도체를 기본으로 하는 공액고분자의 합성과 특성, 그리고 태양전지의 적용)

  • Do, Thu Trang;Ha, Ye Eun;Kim, Joo Hyun
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.694-701
    • /
    • 2013
  • A new copolymer named T-TI24T (poly((5,5-(2-butyl-5,6-bisdecyloxy-4,7-di-thiophen-2-yl-isoindole-1,3-dione))- alt-(2,5-thiophene))) based on phthalimide derivative and thiophene is synthesized by the Stille-coupling reaction. The polymer shows relatively high number average molecular weight of 86500 g/mol with good solubility in common organic solvents such as chloroform, 1,2-dichlorobenzene, and toluene and is thermally stable up to $380^{\circ}C$. Besides, it possesses a relatively low highest occupied molecular orbital (HOMO) energy level of -5.33 eV, promising the high open circuit voltage ($V_{oc}$) for photovoltaic applications. Active layer solution of polymer T-TI24T-as a donor and (6)-1-(3-(methoxycarbonyl)- {5}-1-phenyl[5,6]-fullerene (PCBM)-as an acceptor in different weight ratios is applied to fabricate the polymer solar cell devices. The ratio of polymer/PCBM affects the solar cell efficiency and the best performance exhibits in the device with polymer/PCBM = 1:3 (w/w), which shows a power conversion efficiency (PCE) of 0.199% and a $V_{oc}$ of 0.99 V, respectively. Even though the device shows the very low PCE, the $V_{oc}$ is higher than that of well known bulk heterojunction type solar cell based on P3HT:PC61BM (c.a. 0.5 V).

The Effects of 1,25- Dihydroxyvitamin $D_3$ on Expression of IGF-I Gene and Cellular Proliferation in MC3T3-E1 Cells (골아세포의 IGF-I 유전자 발현 및 세포증식에 대한 1,25-dihydroxyvitamin $D_3$의 영향)

  • Choi, Hee-Dong;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.1
    • /
    • pp.39-52
    • /
    • 2000
  • Polypeptide growth factor belong to a class of potent biologic mediator which regulate cell differentiation, proliferation, migration and metabolism. 1,25-dihydroxyvitamin $D_3$ decrease cell proliferation, and stimulate alkaline phosphatase activity which express in osteoblast during cell differentiation period. IGF-I is known to stimulate cell proliferation and differentiation too. 1,25-dihydroxyvitamin $D_3$ is known to increase IGF-I binding sites and IGF binding protein which inhibite the effect of IGF. The purpose of this study is to evaluate potential role of IGF-I as mediator that control the action of 1,25-dihydroxyvitamin $D_3$. MC3T3-E1 cell were seeded $5{\times}10^5/ml$ at 100mm culture plate in ${\alpha}-MEM$ containing 10% fetal bovine serum. After 48 hour incubation period, medium were changed ${\alpha}-MEM$ containing 5% fetal bovine serum. After 24 hours, $10^{-9}M$ 1,25-dihydroxyvitamin $D_3$ added. Total mRNA was extracted at 0, 6, 24, 48, 72 hour. PRPCR method was programed for the detection of IGF-I mRNA. In the both groups of 1,25-dihydroxy vitamin $D_3$ treated and control, alternative splicing form of IGF-I, IGF-IA and IGF-IB were expressed. In the 1,25-dihydroxyvitamin $D_3$ treated group, IGF-I mRNA expression was matained until 24 hour, there after expression was decresed. MC3T3-E1 cell were seeded $2.5{\times}10^4/ml$ at 24well plate in ${\alpha}-MEM$ containing 10% fetal bovine serum. After 48 hour incubation period, medium were changed ${\alpha}-MEM$ containing 3% fetal bovine serum. After 24 hours, $10^{-9}M$ 1,25-dihydroxyvitamin $D_3$ and 10 ng/ml IGF-I were added separately or together. Cell were cultured for 1 and 3 days, $2{\mu}Ci/ml\;[^3H]$ -thymidine was added for the last 24h of culture of each days. ${[^3H]}$-thymidine incorporation in to DNA was measured and expressed counter per minute(CPM). DNA synthetic activity was significantly decreased by 1,25-dihydroxyvitamin $D_3$ both at 1 day and 3 day, and in the combination group of 1,25-dihydroxyvitamin $D_3$ and IGF-I, DNA synthetic activity was also decreased both at 1 day and 3 days. IGF-I did not affect the DNA synthetic activity compared to control group both at 1 day and 3 day. From the above results, 1,25-dihydroxyvitamin $D_3$ was potent inhibitor of cell proliferaton in MC3T3-E1 cells. It assumed that the effect of 1,25-dihydroxyvitamin $D_3$ on osteoblast proliferation may be mediated in part by decreased level of IGF-I.

  • PDF

CELLULAR ATTACHMENT AND GENE EXPRESSION OF OSTEOBLAST-LIKE CELLS ON ZIRCONIA CERAMIC SURFACES

  • Pae, Ah-Ran;Lee, Hee-Su;Kim, Hyeong-Seob; Baik, Jin;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.227-237
    • /
    • 2008
  • STATEMENT OF PROBLEM: Zirconium oxide can be a substitute to titanium as implant materials to solve the esthetic problems of dark color in the gingival portion of implant restorations. PURPOSE: This study was performed to define attachment and growth behavior of osteoblast- like cells cultured on grooved surfaces of zirconium oxide and evaluate the genetic effect of zirconium oxide surfaces using the reverse transcriptase-polymerase chain reaction (RT-PCR). MATERIAL AND METHODS: MC3T3-E1 cells were cultured on (1) commercially pure titanium discs with smooth surface (T group), (2) yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) with machined surface (ZS group), and (3) Y-TZP with $100{\mu}m$ grooves (ZG group). Cell proliferation activity was evaluated through MTT assay and cell morphology was examined by SEM. The mRNA expression of Runx2, alkaline phosphatase, osteocalcin, TGF-${\beta}1$, IGF-1, G3PDH in E1 cells were evaluated by RT-PCR. RESULTS: From the MTT assay, after 48 hours of adhesion of MC3T3-E1 cells, the mean optical density value of T group and ZG group significantly increased compared to the ZS group. SEM images of osteoblast-like cells showed that significantly more cells were observed to attach to the grooves and appeared to follow the direction of the grooves. After 24 hours of cell adhesion, more spreading and flattening of cells with active filopodia formation occurred. Results of RT-PCR suggest that T group, ZS group, and ZG group showed comparable osteoblast-specific gene expression after 24 hours of cell incubation. CONCLUSION: Surface topography and material of implants can play an important role in expression of osteoblast phenotype markers. Zirconia ceramic showed comparable biological responses of osteoblast-like cells with titanium during a short-time cell culture period. Also, grooves influence cell spreading and guide the cells to be aligned within surface grooves.

CAT 유전자를 지닌 HIV-1을 이용한 시험관내 항 AIDS 약물의 약효 검색

  • 성영철
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.80-80
    • /
    • 1993
  • (목적) 본 연구에서 사용된 바이러스는 HIV-1 nef유전자가 일부 삭제되고 대신 Chloramphenicol acetyltransferase(CAT)가 pSVCAT recombinant 바이러스다. 이러한 recombinant 바이러스를 사용하는 이유는 첫째, CAT activity가 매우 민감하므로 바이러스의 복제억제 정도를 정확하게 측정 할 수 있고 둘째, simian immunodeficiency virus(SIV)의 경우 nef 유전가 in vivo에서는 바이러스의 복제에 필수적이므로 HIV가 SIV와 유사한 것으로 미루어 본 연구에서 사용되는 recombinant SVCAT 바이러스가 안전한 것으로 고려되기 때문이다. (방법) 특히 화합물이 HIV-1의 복제에 얼마나 영향이 있는가는 1) 어느정 도의 virus inoculm을 넣었는지 2) 사용하는 cell line 3) 사용한 cell line의 infection kinetics 4) 실험의 지속기간 5) 테스트하는 assay의 sensitivity에 의존한다. 따라서 $10^{5}$ cell의 H9과 sup T1을 24 well plate에 넣고 sup T1 cell line의 경우 3일 후 항 화합물에 의한 syncytia 형성 및 CAT activity의 억제정도를 현재 AIDS drug으로 쓰이고 있는 Zidovudine을 control로 비교 관찰하였다. H9 cell line의 경우 3일 간격으로 media의 3/4을 fresh media로 바꾸어 주고 9일 후 CAT assay를 하였다. 이러한 assay에서 activity를 보이는 화합물을 reverse transcriptase와 P24 ELISA assay를 재확인하였다.다.

  • PDF

Structural Transition of A-Type Zeolite: Molecular Dynamics Study

  • Song, Mee-Kyung;Chon, Hak-Ze
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.255-258
    • /
    • 1993
  • Molecular dynamics (MD) calculations were carried out in order to investigate the effect of MD cell size to predict the melting phenomena of A-type zeolite. We studied two model systems: a pseudocell of $(T_2O_4Na)_n$, (L= 12.264 $^{\AA}$, N= 84) and a true-cell of (SiAlO$_4Na)_n$. (L= 24.528 $^{\AA}$, N= 672), where T is Si or Al. The radial and bond angle distribution functions of T(Si, Al)-O-T(Si, Al) and diffusion coefficients of T and O were reported at various temperatures. For the true-cell model, the melting temperature is below 1500 K and probably around 1000 K, which is about 600-700 K lower than the pseudocell model. Although it took more time (about 30 times longer) to obtain the molecular trajectories of the true-cell model than those of the pseudocell model, the true-cell model gave more realistic structural transition for the A-type zeolite, which agrees with experiment.