• Title/Summary/Keyword: T-spline

Search Result 45, Processing Time 0.017 seconds

A Study on the Techniques of Configuration Optimization (형상 최적설계를 위한 최적화 기법에 관한 연구)

  • Choi, Byoung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.819-832
    • /
    • 2004
  • This study describes an efficient and facile method for configuration optimum design of structures. One of the ways to achieve numerical shape representation and the selection of design variables is using the design element concept. Using this technique, the number of design variables could be drastically reduced. Isoparametric mapping was utilized to automatically generate the finite element mesh during the optimization process, and this made it possible to easily calculate the derivatives of the coordinates of generated finite element nodes w.r.t. the design variables. For the structural analysis, finite element analysis was adopted in the optimization procedure, and two different techniques(the deterministic method, a modified method of feasible direction; and the stochastic method, a genetic algorithms) were applied to obtain the minimum volumes and section areas for an efficient configuration optimization procedure. Futhermore, spline interpolation was introduced to present a realistic optimum configuration that meet the manufacturing requirements. According to the results of several numerical examples(steel structures), the two techniques suggested in this study simplified the process of configuration optimum design of structures, and yielded improved objective function values with a robust convergence rate. This study's applicability and capability have therefore been demonstrated.

A Study on a Lane Detection and Tracking Algorithm Using B-Snake (B-Snake를 이용한 차선 검출 및 추적 알고리즘에 관한 연구)

  • Kim, Deok-Rae;Moon, Ho-Sun;Kim, Yong-Deak
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.21-30
    • /
    • 2005
  • In this paper, we propose lane detection and trackinB algerian using B-Snake as robust algorithm. One of chief virtues of Lane detection algorithm using B-Snake is that it is possible to specify a wider range of lane structure because B-Spline conform an arbitrary shape by control point set and that it doesn't use any camera parameter. Using a robust algorithm called CHVEP, we find the vanishing point, width of lane and mid-line of lane because of the perspective parallel line and then we can detect the both side of lane mark using B-snake. To demonstrate that this algorithm is robust against noise, shadow and illumination variations in road image, we tested this algorithm about various image divided by weather-fine, rainy and cloudy day. The percentage of correct lane detection is over 95$\%$.

Multi-material topology optimization for crack problems based on eXtended isogeometric analysis

  • Banh, Thanh T.;Lee, Jaehong;Kang, Joowon;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.663-678
    • /
    • 2020
  • This paper proposes a novel topology optimization method generating multiple materials for external linear plane crack structures based on the combination of IsoGeometric Analysis (IGA) and eXtended Finite Element Method (X-FEM). A so-called eXtended IsoGeometric Analysis (X-IGA) is derived for a mechanical description of a strong discontinuity state's continuous boundaries through the inherited special properties of X-FEM. In X-IGA, control points and patches play the same role with nodes and sub-domains in the finite element method. While being similar to X-FEM, enrichment functions are added to finite element approximation without any mesh generation. The geometry of structures based on basic functions of Non-Uniform Rational B-Splines (NURBS) provides accurate and reliable results. Moreover, the basis function to define the geometry becomes a systematic p-refinement to control the field approximation order without altering the geometry or its parameterization. The accuracy of analytical solutions of X-IGA for the crack problem, which is superior to a conventional X-FEM, guarantees the reliability of the optimal multi-material retrofitting against external cracks through using topology optimization. Topology optimization is applied to the minimal compliance design of two-dimensional plane linear cracked structures retrofitted by multiple distinct materials to prevent the propagation of the present crack pattern. The alternating active-phase algorithm with optimality criteria-based algorithms is employed to update design variables of element densities. Numerical results under different lengths, positions, and angles of given cracks verify the proposed method's efficiency and feasibility in using X-IGA compared to a conventional X-FEM.

Soft computing based mathematical models for improved prediction of rock brittleness index

  • Abiodun I. Lawal;Minju Kim;Sangki Kwon
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.279-289
    • /
    • 2023
  • Brittleness index (BI) is an important property of rocks because it is a good index to predict rockburst. Due to its importance, several empirical and soft computing (SC) models have been proposed in the literature based on the punch penetration test (PPT) results. These models are very important as there is no clear-cut experimental means for measuring BI asides the PPT which is very costly and time consuming to perform. This study used a novel Multivariate Adaptive regression spline (MARS), M5P, and white-box ANN to predict the BI of rocks using the available data in the literature for an improved BI prediction. The rock density, uniaxial compressive strength (σc) and tensile strength (σt) were used as the input parameters into the models while the BI was the targeted output. The models were implemented in the MATLAB software. The results of the proposed models were compared with those from existing multilinear regression, linear and nonlinear particle swarm optimization (PSO) and genetic algorithm (GA) based models using similar datasets. The coefficient of determination (R2), adjusted R2 (Adj R2), root-mean squared error (RMSE) and mean absolute percentage error (MAPE) were the indices used for the comparison. The outcomes of the comparison revealed that the proposed ANN and MARS models performed better than the other models with R2 and Adj R2 values above 0.9 and least error values while the M5P gave similar performance to those of the existing models. Weight partitioning method was also used to examine the percentage contribution of model predictors to the predicted BI and tensile strength was found to have the highest influence on the predicted BI.

Relationship between Bony Alignment of Foot and Scoliosis in Children and Adolescent (소아 청소년기에서의 족부 지표와 척추측만증과의 관계)

  • Jae Hwang Song;Woo Jin Shin;Sung Jun Moon;Jin Woong Yi;Tae Gyun Kim
    • Journal of Korean Foot and Ankle Society
    • /
    • v.28 no.2
    • /
    • pp.48-54
    • /
    • 2024
  • Purpose: Foot alignment affects the overall balance and alignment of the body. This study examined the relationship between the foot parameters and scoliosis in children and adolescents through simple radiographs. Materials and Methods: Two hundred and forty-one outpatients under 15 years old from 2013 to 2022 were evaluated. Patients with an abnormal leg length discrepancy or pelvic tilt were screened. The patients included were divided into four groups. Each group was tested to determine if they had scoliosis. The foot anterior-posterior/lateral X-rays were selected for the foot parameters, and the EOS system was used for the spline and pelvis parameters. Results: A t-test of all groups showed no statistically significant difference as the p-value exceeded 0.05. An analysis of variance (ANOVA) comparing the Cobb's angle and foot parameters did not show a significant correlation. On the other hand, female and older patients had a higher Cobb's angle. Conclusion: No direct relationship was noted between scoliosis and the foot parameters that could be measured radiographically among children and adolescents. In addition, no correction between the Cobb's angle and foot parameters was found.