• 제목/요약/키워드: T-peel test

검색결과 50건 처리시간 0.03초

T형 이음 접합에 의한 경량구조물용 접착이음강도의 평가 (Strength Evaluation of Adhesive Bonded Joint for Light Weight Structure by T-Peel Joint Test)

  • 이강용;공병석;우형표
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.56-65
    • /
    • 1998
  • The bonding strength evaluation of the light weight materials for an electrical vehicle has been performed through the T-peel joint test in which the design paramete- rs such as joint style, adherend type, adherend thickness, adhesive thickness, and adhesive type are considered. It is experimentally observed that the peel strength of joint increases with the increase of the adherend thickness. With the increase of the adhesive thickness, however, the peel strength of joint increases a little. Aluminum-FRP adherend combination shows such higher peel strength than that of Aluminum-Aluminum adherend combination. For the adhesive bonded joint, the results of FEM analysis agree with those of experiment. The adhesive bonded joint reinfored with a rivet gives higher peel strength than that of the joint without rivet.

  • PDF

알루미늄/CFRP 복합재의 접착강도 향상을 위한 경화방법에 관한 연구 (A Study on the Curing Method to Improve Bonding Strength of Aluminum/CFRP Composites)

  • 이경엽;양준호;최낙삼
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.130-135
    • /
    • 2002
  • This study investigates the effect of curing method on the bonding strength of aluminum/CFRP composites. The surface of aluminum panel was treated by DC plasma. Lap shear tests and T-peel tests were performed based on the procedure of ASTM 906-94a and ASTMD1876-95, respectively. Test samples were fabricated by using the co-curing method and the secondary curing method. The results showed that the shear strength of test samples made by the co-curing method was 2.5 times greater than that of test samples made by the secondary curing method. The T-peel strength of the co-curing method case was almost 2 times greater than that of the secondary curing method case.

Al/APRP 적층재의 수지혼합비가 인장 및 티-필(T-peel) 강도 특성에 미치는 영향 (The Effect of Resin Mixture Ratio on Characteristics of Tensile and T-peel Strength in Al/AFRP Laminates)

  • 송삼홍;김철웅
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2374-2382
    • /
    • 2002
  • Aluminum alloy/aramid fiber reinforced plastic(Al/AFRP) laminates consists of high strength metal(A15052) and laminated aramid fiber with structural adhesive bond. The mixture ratio effect of epoxy resin curing agent accelerator on the tensile strength and T-peel strength characteristic in Al AFRP laminates were investigated in this study. The epoxy. diglycidylether of bisphenol A(DCEBA), It'as cured by methylene dianiline(MDA) with or without an accelerator(K-54). Eight different kinds of resin mixture ratios were selected for the test , five kinds of Al/AFRP laminates were named as Al/AFRP(1) and three others of Al/AFRP laminates were named as Al/AFRP(2). The comparison of tensile strength and T-peel strength with variation of resin mixture ratio were studied. Respectively. Al/AFRP(1) and Al/AFRP(2) indicated approximately 6.0 times and 7.0 times more improved maximum tensile strength in comparison with those of monolithic A15052. Al/AFRP(2) indicated approximately 1.5 times more impoved maximum T-peel strengths in comparison with those of Al/AFRP(1). As results. Al/AFRP(2) turned out to have more effective characteristics on the tensile strength and T-peel strength than those of Al/AFRP(1).

악안면 보철용 폴리우레탄과 실리콘의 접착도에 관한 실험적 연구 (A STUDY ON THE ADHESIVENESS OF SILICONE AND POLYURETHANE SHEET IN MAXILLOFACIAL PROSTHESES)

  • 조상준;임주환;조인호
    • 대한치과보철학회지
    • /
    • 제34권4호
    • /
    • pp.833-849
    • /
    • 1996
  • The material of choice for functional and esthetic reconstruction of maxillofacial defects is silicone. Silicone has appropriate physical properties for maxillofacial prosthesis but it has weak edge strength. Therefore, a proper combination of silicone and polyurethane sheet is recommended to improve this weakness. Various primers are also used to enhance the adhesive strength between silicone and polyurethane sheet. The purpose of this study was to determine the adhesive strength of silicone and polyurethane sheet. Silicone elastomer mixture was made by admixing MDX4-4210 elastomer (40%) and Silastic Medical Adhesive Type A(60%). This silicone elastomer mixture was attached to polyurethane sheet, using one of three different primers(1205, S-2260, or A-304), treated for 1, 2, 4, 6, and 8 hours. These were then polymerized in room temperature, dry-heat oven or microwave oven. Six specimens per each group, a total of 270 specimens were prepared for final test. The differences of T-peel bonding strengths were then determined by a test. The differences of T-peel bonding strengths were then determined by a test method that was recommended by American Society for Testing and Materials C794-80. The results were statistically analyzed using the ANOVA and Mutiple Range Tests(Tukey' HSD). The reults were as follow. 1. Type of primer, primer reaction time, and methods of polymerization showed significant correlation on the T-peel bonding strengths in adhesiveness between silicone and polyurethane sheet. 2. A-304 primer showed statistically higher in T-peel bonding strength than otehr type of primers except for the polymerization in microwave oven with reaction times of 2, 6 hours(p<0.05). 3. No significant differences in T-peel bonding strength were observed among the polymerization methods. 4. The effect of reaction time by the primer type and polymerization method showed statistically significant differences in bonding strength among different reaction times. And in most cases, reaction time of 1 or 2 hours showed higher T-peel bonding strength.

  • PDF

이온빔의 공정변수에 따른 Cu/Polyimide 박막의 접착력향상에 관한 연구 (A Study on the Improvement of Adhesion according to the Process Variables of Ion Beam in the Cu/Polyimide Thin Film)

  • 신윤학;김명한;최재하
    • 한국재료학회지
    • /
    • 제15권7호
    • /
    • pp.458-464
    • /
    • 2005
  • In microelectronics packaging, the reliability of the metal/polymer interfaces is an important issue because the adhesion strength between dissimilar materials is often inherently poor. The modification of polymer surfaces by ion beam irradiation and rf plasma is commonly used to enhance the adhesion strength of the interface. T-peel strengths were measured using a Cu/polyimide system under varying $N_2^+$ ion beam irradiation conditions for pretreatment. The measured T-peel strength showed reversed camel back shape regarding the fixed metal-layer thickness, which was quite different from the results of the 90° peel test. The elementary analysis suggests that the variation of the T-peel strength is a combined outcome of the plastic bending work of the metal and polymer strips. The results indicate that the peel strength increases with $N_2^+$ ion beam irradiation energy at the fixed metal-layer thickness.

이온빔에 의한 Cu/Polyimide 표면개질에 따른 접착력향상에 관한 연구 (A Study on the Improvement of Adhesion according to the Surface Modification of Cu/Polyimide Films by ion Beam Irradiation)

  • 신윤학;추준식;이승우;정찬회;김명한
    • 한국재료학회지
    • /
    • 제15권1호
    • /
    • pp.42-46
    • /
    • 2005
  • In microelectronics packaging, the reliability of the metal/polymer interfaces is an important issue because the adhesion strength between dissimilar materials is often inherently poor. The modification of polymer sufaces by ion beam irradiation and rf plasma are commonly used to enhance the adhesion strength of the interface. T-peel strengths were measured using a Cu/polyimide system under varying $Ar^+$ ion beam irradiation pretreatment conditions. The measured T-peel strength showed reversed camel back shape regarding the fixed metal-layer thickness, which was quite different from the results of the $90^{\circ}$ peel test. The elementary analysis suggests that the variation of the T-peel strength is a combined outcome of the plastic bending work of the metal and polymer strips. The results indicate that the peel strength increases with $Ar^+$ ion beam irradiation energy at the fixed metal-layer thickness.

다양한 중합방법에 따른 악안면 보철용 폴리우레탄과 자가중합 레진 간의 결합력에 관한 연구 (A Study on the Adhesiveness between Polyurethane Sheet for Maxillofacial Prostheses and Autopolymerizing Acrylic Resin in Various Polymerization Methods)

  • 김두열;조인호
    • 구강회복응용과학지
    • /
    • 제16권2호
    • /
    • pp.123-132
    • /
    • 2000
  • The field of maxillofacial prosthetics is concerned with the prosthetic reconstruction of missing head and neck tissue. Currently, facial prostheses are usually applied in cases of defects caused by the surgical removal of tumors or congenital defects. While silicone has been most widely used for the reconstruction of missing maxillofacial defects, it does not have ideal physical properties. Therefore, bonding a thin polyurethane sheet to silicone prostheses was recommended. In this case skin adhesives were used for the retention of maxillofacial prostheses. But retention of devices has always been problematic. The contributions of implants can be made to solve these problems. Implants have reduced the need for adhesive use, simplifying cleaning procedures and thus extending the life of the prostheses. For implant-retained prostheses, retentive matrix is necessary to hold attachments and/or magnets. The retentive matrix is usually fabricated with autopolymerizing acrylic resin or visible light- polymerized resin. The purpose of this study was to compare the adhesion-in-peel force of silicone adhesive to autopolymerizing acrylic resin and polyurethane sheet with two different surface textures : pumice polish only or retention groove, and three surface primers : Dow corning 1205 primer or Dow corning S-2260 primer or FactorII A-304 primer, and two polymerization methods : room temperature or dry heat oven. The t-peel bond strength of specimens was determined as described in ASTM Standard D1876-72. The results were statistically analyzed using the ANOVA test, multiple range test and t-test The results were as follows. 1. The t-peel bond strength of A-304 primer was the highest and statistically higher than that of S-2260(p<0.05). 2. The t-peel bond strength of specimens with retention groove was statistically higher than that of specimens polished with pumice(p<0.05). 3. The t-peel bond strength of specimens polymerized in dry heat oven was statistically higher than that of specimens in room temperature(p<0.01).

  • PDF

표면처리된 알루미늄/CFRP 복합재의 전단특성에 관한 연구 (A Study of Shear Properties of Surface Treated Aluminum/CFRP Composites)

  • 양준호;지창헌;윤창선;이경엽
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.75-78
    • /
    • 2000
  • This study investigates the effect of surface treatment on the shear strength between aluminum panel and composite plate. The aluminum panel was surface-treated by DC Plasma and the composite Plate was surface-treated by ion beam. Lap shear test and T-peel test were performed to determine the shear strength and T-peel strength. Results showed that the shear strength of surface-treated case was 2.5 times higher than that of untreated case. The T-peel strength of treated case was more than 5 times higher than that of untreated case. SEM examination showed that the strength increase of surface-treated case was due to the more spread of epoxy to the panel.

  • PDF

Cu-Cr 합금박막의 필 접착력과 소성변형 (Peel Adhesion Strength and Plastic Deformation of Cu-Cr Alloy Thin Films)

  • 이태곤;임준홍;김영호
    • 한국표면공학회지
    • /
    • 제28권4호
    • /
    • pp.219-224
    • /
    • 1995
  • The peel adhesion and plastic deformation in Cu-Cr alloy films, sputter-deposited onto polyimide films, have been studied as a function of Cr content in the film. The adhesion strength has been measured by T-peel test and the amount of plastic deformation in the peeled metal strip was determined qualitatively by XRD technique. Peel adhesion strength has a maximum in the film containing 22-33wt.% Cr and the peel strength of pure Cr film is lower than the maximum. The film having the highest peel strength is deformed most heavily. The effect of Cr content on the peel strength is discussed in terms of the interfacial bond strength and mechanical properties of Cu-Cr alloy film.

  • PDF