• Title/Summary/Keyword: T-cell receptors

Search Result 150, Processing Time 0.023 seconds

Regulatory Role of Zinc in Immune Cell Signaling

  • Kim, Bonah;Lee, Won-Woo
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.335-341
    • /
    • 2021
  • Zinc is an essential micronutrient with crucial roles in multiple facets of biological processes. Dysregulated zinc homeostasis impairs overall immune function and resultantly increases susceptibility to infection. Clinically, zinc supplementation is practiced for treatment of several infectious diseases, such as diarrhea and malaria. Recent focus on zinc as a beneficial element for immune system support has resulted in investigation of the immunomodulatory roles of zinc in a variety of immune cells. Besides its classical role as a cofactor that regulates the structural function of thousands of proteins, accumulating evidence suggests that zinc also acts, in a manner similar to calcium, as an ionic regulator of immune responses via participation as an intracellular messenger in signaling pathways. In this review, we focus on the role of zinc as a signaling molecule in major pathways such as those downstream of Toll-like receptors-, T cell receptor-, and cytokine-mediated signal transduction that regulate the activity and function of monocytes/macrophages and T cells, principal players in the innate and adaptive immune systems.

Branched N-glycans and their implications for cell adhesion, signaling and clinical applications for cancer biomarkers and in therapeutics

  • Taniguchi, Naoyuki;Korekane, Hiroaki
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.772-781
    • /
    • 2011
  • Branched N-glycans are produced by a series of glycosyltransferases including N-acetylglucosaminyltransferases and fucosyltransferases and their corresponding genes. Glycans on specific glycoproteins, which are attached via the action of glycosyltransferases, play key roles in cell adhesion and signaling. Examples of this are adhesion molecules or signaling molecules such as integrin and E-cadherin, as well as membrane receptors such as the EGF and TGF-${\beta}$ receptors. These molecules also play pivotal roles in the underlying mechanism of a variety of disease such as cancer metastasis, diabetes, and chronic obstructive pulmonary disease (COPD). Alterations in the structures of branched N-glycans are also hall marks and are useful for cancer biomarkers and therapeutics against cancer. This mini-review describes some of our recent studies on a functional glycomics approach to the study of branched N-glycans produced by N-acetylglucosaminyltransferases III, IV, V and IX (Vb) (GnT-III, GnT-IV, V and IX (Vb)) and fucosyltransferase 8 (Fut8) and their pathophysiological significance, with emphasis on the importance of a systems glycobiology approach as a future perspective for glycobiology.

Growth Factor Receptor Expression on Brain Tumor Cell Lines : Preliminary Study for in vitro and in vivo Experiments of Immunotoxin Therapy (뇌종양세포주에서의 성장인자수용체의 발현 : 면역독소 치료의 연구를 위한 예비실험)

  • im, Ki-Uk;Ni, Hsiao-Tzu;Low, Walter C.;Hall, Walter A.
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.6
    • /
    • pp.731-737
    • /
    • 2000
  • Objective : Growth factor receptors on the tumor cells are known to be expressed highly allowing the tumor cells to bind growth factors to stimulate cellular division. Immunotoxin therapy is one of the novel approaches to the primary malignant brain tumor, and expression of cell-surface receptor is essential for the immunotoxin to have specific anti-tumor activity. Despite promising cytotoxic activity of immunotoxin, tumor responses are not curative on clinical trials, and additional studies are needed regarding various factors influencing the efficacy of the immunotoxin. The purpose of this study is to detect the expression of various growth factor receptors on brain tumor cell lines which are going to be used in these studies. Materials and Methods : The authors detected transferrin receptor(TR), insulin-like growth factor-1 receptor(IGF-1R), and interleukin-4 receptor(IL-4R) on medulloblastoma cell line(Daoy) and glioblastoma cell lines(U373 MG and T98 G) by flow cytometric analysis. Results : TR was expressed on Daoy, U373 MG, and T98 G. IGF-1R was expressed on Daoy and U373 MG, but not on T98 G. IL-4R was expressed on all cell lines tested. Conclusion : The transferrin and interleukin-4 receptors might be good targets for immunotoxin therapy. The results should be considered in additional in vitro and in vivo studies regarding immunotoxin and in establishing the proper treatment model of the immunotoxin therapy including selection of the adequate immunotoxin.

  • PDF

Phosphatase Ssu72 Is Essential for Homeostatic Balance Between CD4+ T Cell Lineages

  • Min-Hee Kim;Chang-Woo Lee
    • IMMUNE NETWORK
    • /
    • v.23 no.2
    • /
    • pp.12.1-12.17
    • /
    • 2023
  • Ssu72, a dual-specificity protein phosphatase, not only participates in transcription biogenesis, but also affects pathophysiological functions in a tissue-specific manner. Recently, it has been shown that Ssu72 is required for T cell differentiation and function by controlling multiple immune receptor-mediated signals, including TCR and several cytokine receptor signaling pathways. Ssu72 deficiency in T cells is associated with impaired fine-tuning of receptor-mediated signaling and a defect in CD4+ T cell homeostasis, resulting in immune-mediated diseases. However, the mechanism by which Ssu72 in T cells integrates the pathophysiology of multiple immune-mediated diseases is still poorly elucidated. In this review, we will focus on the immunoregulatory mechanism of Ssu72 phosphatase in CD4+ T cell differentiation, activation, and phenotypic function. We will also discuss the current understanding of the correlation between Ssu72 in T cells and pathological functions which suggests that Ssu72 might be a therapeutic target in autoimmune disorders and other diseases.

The Roles of CCR7 for the Homing of Memory CD8+ T Cells into Their Survival Niches

  • Hanbyeul Choi;Heonju Song;Yong Woo Jung
    • IMMUNE NETWORK
    • /
    • v.20 no.3
    • /
    • pp.20.1-20.15
    • /
    • 2020
  • Memory CD8+ T cells in the immune system are responsible for the removal of external Ags for a long period of time to protect against re-infection. Naïve to memory CD8+ T cell differentiation and memory CD8+ T cell maintenance require many different factors including local environmental factors. Thus, it has been suggested that the migration of memory CD8+ T cells into specific microenvironments alters their longevity and functions. In this review, we have summarized the subsets of memory CD8+ T cells based on their migratory capacities and described the niche hypothesis for their survival. In addition, the basic roles of CCR7 in conjunction with the migration of memory CD8+ T cells and recent understandings of their survival niches have been introduced. Finally, the applications of altering CCR7 signaling have been discussed.

The Role of SH2 Domain-containing Leukocyte Phosphoprotein of 76 kDa in the Regulation of Immune Cell Development and Function

  • Koretzky, Gary A.
    • IMMUNE NETWORK
    • /
    • v.9 no.3
    • /
    • pp.75-83
    • /
    • 2009
  • Recent years have seen an explosion of new knowledge defining the molecular events that are critical for development and activation of immune cells. Much of this new information has come from a careful molecular dissection of key signal transduction pathways that are initiated when immune cell receptors are engaged. In addition to the receptors themselves and critical effector molecules, these signaling pathways depend on adapters, proteins that have no intrinsic effector function but serve instead as scaffolds to nucleate multimolecular complexes. This review summarizes some of what has been learned about one such adapter protein, SH2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76), and how it regulates and integrates signals after engagement of immunoreceptors and integrins on various immune cell lineages.

CTLA-4-Tg/CD-28-KO Mice Exhibit Reduced T Cell Proliferation in vivo Compared to CD-28-KO Mice in a Graft-versus-host Disease Model

  • Yoo, Jong-Sun;Lee, Yun-Jung;Yoon, Joo-Won;Hyung, Kyeong-Eun;Hwang, Kwang-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.349-353
    • /
    • 2012
  • Activated T cells express inhibitory receptors such as CTLA-4 that can downregulate immune responses. Blockade of or genetic deficiency in CTLA-4 can result in autoimmunity. Therefore, strategies to increase the inhibitory function of CTLA-4 may be attractive in settings of undesirable T cell responses such as autoimmunity or transplant rejection. We have tested the hypothesis that transgenic constitutive expression of CTLA-4 can further attenuate immune responses when compared with normal inducible expression. Our results indicate that transgenic expression of CTLA-4 in mouse T cells (CTLA-4-Tg T cells) results in reduced cell cycle progression and increased apoptosis of TCR-stimulated T cells. CTLA-4-Tg T cells display reduced T cell proliferation in an in vivo model of graft versus host disease (GVHD). These results further our understanding of how CTLA-4 can be manipulated to inhibit immune responses and may help development of new therapeutic strategies for clinical settings of autoimmunity and transplantation.

Single-cell RNA sequencing identifies distinct transcriptomic signatures between PMA/ionomycin- and αCD3/αCD28-activated primary human T cells

  • Jung Ho Lee;Brian H Lee;Soyoung Jeong;Christine Suh-Yun Joh;Hyo Jeong Nam;Hyun Seung Choi;Henry Sserwadda;Ji Won Oh;Chung-Gyu Park;Seon-Pil Jin;Hyun Je Kim
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.18.1-18.11
    • /
    • 2023
  • Immunologists have activated T cells in vitro using various stimulation methods, including phorbol myristate acetate (PMA)/ionomycin and αCD3/αCD28 agonistic antibodies. PMA stimulates protein kinase C, activating nuclear factor-κB, and ionomycin increases intracellular calcium levels, resulting in activation of nuclear factor of activated T cell. In contrast, αCD3/αCD28 agonistic antibodies activate T cells through ZAP-70, which phosphorylates linker for activation of T cell and SH2-domain-containing leukocyte protein of 76 kD. However, despite the use of these two different in vitro T cell activation methods for decades, the differential effects of chemical-based and antibody-based activation of primary human T cells have not yet been comprehensively described. Using single-cell RNA sequencing (scRNA-seq) technologies to analyze gene expression unbiasedly at the single-cell level, we compared the transcriptomic profiles of the non-physiological and physiological activation methods on human peripheral blood mononuclear cell-derived T cells from four independent donors. Remarkable transcriptomic differences in the expression of cytokines and their respective receptors were identified. We also identified activated CD4 T cell subsets (CD55+) enriched specifically by PMA/ionomycin activation. We believe this activated human T cell transcriptome atlas derived from two different activation methods will enhance our understanding, highlight the optimal use of these two in vitro T cell activation assays, and be applied as a reference standard when analyzing activated specific disease-originated T cells through scRNA-seq.

Emerging Co-signaling Networks in T Cell Immune Regulation

  • Jung, Keunok;Choi, Inhak
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.184-193
    • /
    • 2013
  • Co-signaling molecules are surface glycoproteins that positively or negatively regulate the T cell response to antigen. Co-signaling ligands and receptors crosstalk between the surfaces of antigen-presenting cells (APCs) and T cells, and modulate the ultimate magnitude and quality of T cell receptor (TCR) signaling. In the past 10 years, the field of co-signaling research has been advanced by the understanding of underlying mechanisms of the immune modulation led by newly identified co-signaling molecules and the successful preclinical and clinical trials targeting co-inhibitory molecules called immune checkpoints in the treatment of autoimmune diseases and cancers. In this review, we briefly describe the characteristics of well-known B7 co-signaling family members regarding the expression, functions and therapeutic implications and to introduce newly identified B7 members such as B7-H5, B7-H6, and B7-H7.

Adenosine A3 Receptor Mediates ERK1/2- and JNK-Dependent TNF-α Production in Toxoplasma gondii-Infected HTR8/SVneo Human Extravillous Trophoblast Cells

  • Ye, Wei;Sun, Jinhui;Li, Chunchao;Fan, Xuanyan;Gong, Fan;Huang, Xinqia;Deng, Mingzhu;Chu, Jia-Qi
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.4
    • /
    • pp.393-402
    • /
    • 2020
  • Toxoplasma gondii is an intracellular parasite that causes severe disease when the infection occurs during pregnancy. Adenosine is a purine nucleoside involved in numerous physiological processes; however, the role of adenosine receptors in T. gondii-induced trophoblast cell function has not been investigated until now. The goal of the present study was to evaluate the intracellular signaling pathways regulated by adenosine receptors using a HTR-8/SVneo trophoblast cell model of T. gondii infection. HTR8/SVneo human extravillous trophoblast cells were infected with or without T. gondii and then evaluated for cell morphology, intracellular proliferation of the parasite, adenosine receptor expression, TNF-α production and mitogen-activated protein (MAP) kinase signaling pathways triggered by adenosine A3 receptor (A3AR). HTR8/SVneo cells infected with T. gondii exhibited an altered cytoskeletal changes, an increased infection rate and reduced viability in an infection time-dependent manner. T. gondii significantly promoted increased TNF-α production, A3AR protein levels and p38, ERK1/2 and JNK phosphorylation compared to those observed in uninfected control cells. Moreover, the inhibition of A3AR by A3AR siRNA transfection apparently suppressed the T. gondii infection-mediated upregulation of TNF-α, A3AR production and MAPK activation. In addition, T. gondii-promoted TNF-α secretion was dramatically attenuated by pretreatment with PD098059 or SP600125. These results indicate that A3AR-mediated activation of ERK1/2 and JNK positively regulates TNF-α secretion in T. gondii-infected HTR8/SVneo cells.