• Title/Summary/Keyword: T-S Fuzzy

Search Result 416, Processing Time 0.028 seconds

Fuzzy Modeling and Control of Wheeled Mobile Robot

  • Kang, Jin-Shik
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.587-590
    • /
    • 2003
  • In this paper, the control of the differential drive wheeled mobile robot (DDWMR) is studied. Because the DDWMR have non-holonomic constraints, it cannot be stabilized by smooth feedback. The T-S fuzzy model for the DDWMR is presented and a control algorithm Is developed by well known PID control and LMI based regional pole-placement.

  • PDF

ON COMMON FIXED POINT THEOREMS IN FUZZY METRIC SPACES

  • Cho, Seong-Hoon
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.523-533
    • /
    • 2006
  • In this paper we have a common fixed point theorem which is a generalization of result of [12] and we characterize the conditions for continuous self mappings S, T of complete fuzzy metric space (X, M, *) have a uniqe common fixed point in X.

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

A Study on Fuzzy Logic Method for the Assessment of Tunnel Concrete Lining (터널 콘크리트 라이닝의 상태평가를 위한 퍼지추론기법 연구)

  • 이성원;조만섭;이광호;이석원;배규진;안영기
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.337-349
    • /
    • 1999
  • There are many difficulties to the engineers in the assessment of tunnel safety. Consequently, objective assessment of concrete lining is hard even by the experts of tunnel assessment. Of several difficulties in the assessment of tunnel safety, in this study, tunnel concrete lining was focussed iud evaluated quantitatively and objectively using the Fuzzy theory which it generally considered to be appropriate for the assessment, control and judgment. T-FLAS based on fuzzy theory was developed in this study for the quantitative and objective assessment of the concrete lining in tunnels. Based on the application of T-FLAS on the evaluated field data, it was shown that the assessment system using fuzzy theory(T-FLAS) can be the effective and objective method for the assessment of concrete lining.

  • PDF

ON A FUZZY BANACH SPACE

  • Rhie, G.S.;Hwang, I.A.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.71-78
    • /
    • 2000
  • The main goal of this paper is to prove the following theorem ; Let (X, ${\rho}_1$) be a fuzzy normed linear space over K and (Y, ${\rho}_2$) be a fuzzy Banach space over K. If ${\chi}_{B_{{\parallel}{\cdot}{\parallel}}}{\supseteq}{\rho}*$, then (CF(X,Y), ${\rho}*$) is a fuzzy Banach space, where ${\rho}*(f)={\vee}{\lbrace}{\theta}{\wedge}\frac{1}{t({\theta},f)}\;{\mid}\;{\theta}{\in}(0,1){\rbrace}$, $f{\in}CF(X,Y)$, $B_{{\parallel}{\cdot}{\parallel}}$ is the closed unit ball on (CF(X, Y), ${\parallel}{\cdot}{\parallel}$ and ${\parallel}f{\parallel}={\vee}{\lbrace}P^2_{{\alpha}^-}(f(x))\;{\mid}\;P^1_{{\alpha}^-}(x)=1,\;x{\in}X{\rbrace}$, $f{\in}CF(X,Y)$, ${\alpha}{\in}(0,1)$.

  • PDF

Intelligent Controller for Networked Control Systems with Time-delay (시간지연을 갖는 네트워크 제어 시스템의 지능형 제어기 설계)

  • Bae, Gi-Sun;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.139-144
    • /
    • 2011
  • We consider the stabilization problem for a class of networked control systems with random delays in the discrete-time domain. The controller-to-actuator and sensor-to-controller time-delays are modeled as two Markov chains, and the resulting closed-loop systems are Markovian jump nonlinear systems with two modes. The T-S (Takagi-Sugeno) fuzzy model is employed to represent a nonlinear system with Markovian jump parameters. The aim is to design a fuzzy controller such that the closed-loop Markovian jump fuzzy system is stochastically stable. The necessary and sufficient conditions on the existence of stabilizing fuzzy controllers are established in terms of LMIs (Linear Matrix Inequalities). It is shown that fuzzy controller gains are mode-dependent. Finally, a simulation example is presented to illustrate the effectiveness of the proposed design method.

An Intelligent Power Transformer Protective Relaying Algorithm Based on Furzy Decision-Making (Fuzzy Decision-Making을 이용한 지능형 변압기 보호 계전 알고리즘)

  • Lee, S.J.;Kang, S.H.;Choe, Myeon-Song;Kim, S.T.;Kang, D.H.;Kim, K.H.;Kim, I.D.;Jang, B.T.;Lim, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.891-893
    • /
    • 1997
  • In this paper an intelligent power transformer protective relaying algorithm based on Fuzzy Decision-Making is presented. The introduced protection algorithm contains several internal fuzzy rule-bases including bpa(Basic Probability Assignment: m) which are subject to off-line pre-installation by the analysis of the transformer transient characteristics for detecting the internal fault. Dempster-Shafer's rule of combination is used for the inference method with rules to decide the situation of a transformer, The proposed algorithm immunes to the saturation of transformer, inrush conditions, over excitation, and external fault. The included results of testing show practically sufficient sensitivity and selectivity of the proposed algorithm.

  • PDF

A Study on Short-Term Load Forecasting System Using Data Mining (데이터 마이닝을 이용한 단기부하예측 시스템 연구)

  • Kim, Do-Wan;Park, Jin-Bae;Kim, Juhg-Chan;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.588-591
    • /
    • 2003
  • This paper presents a new short-term load forecasting system using data mining. Since the electric load has very different pattern according to the day, it definitely gives rise to the forecasting error if only one forecasting model is used. Thus, to resolve this problem, the fuzzy model-based classifier and predictor are proposed for the forecasting of the hourly electric load. The proposed classifier is the multi-input and multi-output fuzzy system of which the consequent part is composed of the Bayesian classifier. The proposed classifier attempts to categorize the input electric load into Monday, Tuesday$\sim$Friday, Saturday, and Sunday electric load, Then, we construct the Takagi-Sugeno (T-S) fuzzy model-based predictor for each class. The parameter identification problem is converted into the generalized eigenvalue problem (GEVP) by formulating the linear matrix inequalities (LMIs). Finally, to show the feasibility of the proposed method, this paper provides the short-term load forecasting example.

  • PDF

The Response Improvement of PD Type FLC System by Self Tuning (자기동조에 의한 PD 형 퍼지제어시스템의 응답 개선)

  • Choi, Hansoo;Lee, Kyoung-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1101-1105
    • /
    • 2012
  • This study proposes a method for improvement of PD type fuzzy controller. The method includes self tuner using gradient algorithm that is one of the optimization algorithms. The proposed controller improves simple Takagi-Sugeno type FLC (Fuzzy Logic Control) system. The simple Takagi-Sugeno type FLC system changes nonlinear characteristic to linear parameters of consequent membership function. The simple FLC system could control the system by calibrating parameter of consequent membership function that changes the system response. While the determination on parameter of the simple FLC system works well only partially, the proposed method is needed to determine parameters that work for overall response. The simple FLC system doesn't predict the response characteristics. While the simple FLC system works just like proportional part of PID, our system includes derivative part to predict the next response. The proposed controller is constructed with P part and D part FLC system that characteristic parameter on system response is changed by self tuner for effective response. Since the proposed controller doesn't include integral part, it can't eliminate steady state error. So we include a gain to eliminate the steady state error.

Identification of Induction Motor Using TS Fuzzy (T-S Fuzzy를 이용한 유도전동기의 Identification)

  • Lee, Dong-Kwang;Park, Seung-Ho;Kwak, Gun-Pyong;Park, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1856-1857
    • /
    • 2011
  • Induction motor is nonlinear multivariable system. It is not easy to control precisely. Usually Induction motor need linearized model in order to make it easy to control. In this paper, linearized model of nonlinear model in induction motor can change by using TS Fuzzy Identification.

  • PDF