• 제목/요약/키워드: T-Garch Model

검색결과 31건 처리시간 0.023초

ARMA-GARCH 모형에 의한 중국 금 선물 시장 가격 변동에 대한 분석 및 예측 (Volatility analysis and Prediction Based on ARMA-GARCH-typeModels: Evidence from the Chinese Gold Futures Market)

  • 이몽화;김석태
    • 무역학회지
    • /
    • 제47권3호
    • /
    • pp.211-232
    • /
    • 2022
  • Due to the impact of the public health event COVID-19 epidemic, the Chinese futures market showed "Black Swan". This has brought the unpredictable into the economic environment with many commodities falling by the daily limit, while gold performed well and closed in the sunshine(Yan-Li and Rui Qian-Wang, 2020). Volatility is integral part of financial market. As an emerging market and a special precious metal, it is important to forecast return of gold futures price. This study selected data of the SHFE gold futures returns and conducted an empirical analysis based on the generalised autoregressive conditional heteroskedasticity (GARCH)-type model. Comparing the statistics of AIC, SC and H-QC, ARMA (12,9) model was selected as the best model. But serial correlation in the squared returns suggests conditional heteroskedasticity. Next part we established the autoregressive moving average ARMA-GARCH-type model to analysis whether Volatility Clustering and the leverage effect exist in the Chinese gold futures market. we consider three different distributions of innovation to explain fat-tailed features of financial returns. Additionally, the error degree and prediction results of different models were evaluated in terms of mean squared error (MSE), mean absolute error (MAE), Theil inequality coefficient(TIC) and root mean-squared error (RMSE). The results show that the ARMA(12,9)-TGARCH(2,2) model under Student's t-distribution outperforms other models when predicting the Chinese gold futures return series.

광양항의 수출물동량과 수출액의 변동성 (Volatility of Export Volume and Export Value of Gwangyang Port)

  • 모수원;이광배
    • 한국항만경제학회지
    • /
    • 제31권1호
    • /
    • pp.1-14
    • /
    • 2015
  • 변동성이나 변이계수의 크기와 미치는 효과의 크기가 반드시 비례하는 것은 아니다. 그것은 변동성을 유발하는 요인이나 변동성의 특성에 차이가 있을 수 있기 때문이다. 그런데 광양항의 수출액과 수출량은 밀접한 선형관계를 가지나 두 변수의 변동률은 낮은 상관관계를 보인다. 이것은 두 변수의 변동성의 특성이 다르다는 것을 의미한다. 이에 물동량과 수출액의 예측하지 못한 요인의 밀도함수가 정규분포 형태를 보이지 않을 뿐만 아니라 부호편의검정, 규모편의검정, 결합검정, Ljung-Box Q 통계량 등이 GARCH와 같은 변동성 모형을 이용하여 분석을 실시하는 것이 합리적임을 보인다. 물동량 변동성에서는 대칭적 GARCH모형이 아닌 비대칭 GARCH모형이 적합한데 비해 수출액 변동성에서는 GARCH모형이 적합함을 보인다. 뉴스충격곡선을 도출하여 물동량의 경우 GJR모형이 EGARCH모형에 비해 나쁜 뉴스에 대한 분산을 과대평가하나 좋은 뉴스에 대한 분산을 과소평가하는 경향이 있음을 밝힌다.

원유시장 분석을 위한 VaR 모형 (Value-at-Risk Models in Crude Oil Markets)

  • 강상훈;윤성민
    • 자원ㆍ환경경제연구
    • /
    • 제16권4호
    • /
    • pp.947-978
    • /
    • 2007
  • 본 연구에서는 원유시장의 변동성 분석에 적용될 수 있는 VaR(Value-at-Risk) 접근법을 고찰한다. 그리고 다양한 VaR 모형들(RiskMetrics, GARCH, IGARCH와 FIGARCH 모형)의 성과를 정규분포와 치우친 Student-t 분포 가정 하에서 평가한다. Brent 및 Dubai 시장의 일별가격 자료를 이용한 실증분석 결과에 따르면, FIGARCH 모형이 GARCH 모형이나 IGARCH 모형보다 원유시장의 변동성에 내재되어 있는 장기기억 특성을 잘 반영한다는 점에서 더 우월한 것으로 나타났다. 이러한 사실은 원유시장 수익률의 변동성에는 장기기억이 존재한다는 것을 의미한다. 그리고 VaR 분석 결과, 치우친 Student-t 분포 가정 하에서 추정되는 FIGARCH 모형이 롱 포지션과 숏 포지션 모두에서 정규분포 가정 하에서 추정되는 다른 변동성 모형들보다 원유시장에서의 투자 위험을 더 정확하게 예측하는 것으로 나타났다. 이러한 사실은 치우친 Student-t 분포 가정이 원유시장 수익률 분포에 내재되어 있는 비정상적 왜도와 첨도를 모형화하는데 더 적합하다는 것을 의미한다. 이와 같은 발견은 원유시장 구매자 및 판매자들이 원유가격의 움직임을 올바르게 측정하고 VaR을 정확하게 추정하는데 도움을 줄 것이다.

  • PDF

제철원료 운송시장의 변동성 전이 분석에 대한 연구 (A Study on the Volatility Transition of Steel Raw Material Transport Market)

  • 황요평;오예은;박근식
    • 무역학회지
    • /
    • 제47권4호
    • /
    • pp.215-231
    • /
    • 2022
  • Analysis and forecasting of the Baltic Capsize Index (BCI) is important for managing an entity's losses and risks from the uncertainty and volatility of the fast-changing maritime transport market in the future. This study conducted volatility transition analysis through the GARCH model, using BCI which is highly related to steel raw materials. As for the data, 2,385 monthly data were used from March 1999 to March 2021. In this study, after basic statistical analysis, unit root and cointegration test, the GARCH, EGARCH, and DCC-GARCH models were used for volatility transition analysis. As the results of GARCH and EGARCH model, we confirmed that all variables had no autocorrelation between the standardized residuals for error terms and the square of residuals, that the variability of all variables at this time was likely to persist in the future, and that the variability of the time-series error term impact according to Iron ore trade (IoT). In addition, through the EGARCH model, the magnitude convenience of all variables except the Iron ore price (IOP) and Capesize bulk fleet (BCF) variables was greater than the positive value (+). As a result of analyzing the DCC-GARCH (1,1) model, partial linear combinations were confirmed over the entire period. Estimating the effect of variability transition on BCF and C5 with statistically significant linear combinations with BCI confirmed that the impact of BCF on BCI was greater than the impact of BCI itself.

An Exponential GARCH Approach to the Effect of Impulsiveness of Euro on Indian Stock Market

  • Sahadudheen, I
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제2권3호
    • /
    • pp.17-22
    • /
    • 2015
  • This paper examines the effect of impulsiveness of euro on Indian stock market. In order to examine the problem, we select rupee-euro exchange rates and S&P CNX NIFTY and BSE30 SENSEX to represent stock price. We select euro as it considered as second most widely used currency at the international level after dollar. The data are collected a daily basis over a period of 3-Apr-2007 to 30-Mar-2012. The statistical and time series properties of each and every variable have examined using the conventional unit root such as ADF and PP test. Adopting a generalized autoregressive conditional heteroskedasticity (GARCH) and exponential GARCH (EGARCH) model, the study suggests a negative relationship between exchange rate and stock prices in India. Even though India is a major trade partner of European Union, the study couldn't find any significant statistical effect of fluctuations in Euro-rupee exchange rates on stock prices. The study also reveals that shocks to exchange rate have symmetric effect on stock prices and exchange rate fluctuations have permanent effects on stock price volatility in India.

Modeling and Forecasting Saudi Stock Market Volatility Using Wavelet Methods

  • ALSHAMMARI, Tariq S.;ISMAIL, Mohd T.;AL-WADI, Sadam;SALEH, Mohammad H.;JABER, Jamil J.
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권11호
    • /
    • pp.83-93
    • /
    • 2020
  • This empirical research aims to modeling and improving the forecasting accuracy of the volatility pattern by employing the Saudi Arabia stock market (Tadawul)by studying daily closed price index data from October 2011 to December 2019 with a number of observations being 2048. In order to achieve significant results, this study employs many mathematical functions which are non-linear spectral model Maximum overlapping Discrete Wavelet Transform (MODWT) based on the best localized function (Bl14), autoregressive integrated moving average (ARIMA) model and generalized autoregressive conditional heteroskedasticity (GARCH) models. Therefore, the major findings of this study show that all the previous events during the mentioned period of time will be explained and a new forecasting model will be suggested by combining the best MODWT function (Bl14 function) and the fitted GARCH model. Therefore, the results show that the ability of MODWT in decomposition the stock market data, highlighting the significant events which have the most highly volatile data and improving the forecasting accuracy will be showed based on some mathematical criteria such as Mean Absolute Percentage Error (MAPE), Mean Absolute Scaled Error (MASE), Root Means Squared Error (RMSE), Akaike information criterion. These results will be implemented using MATLAB software and R- software.

OECD 회원국들의 자본시장 충격반응도 분석 (An Analysis of Capital Market Shock Reaction Effects in OECD Countries)

  • 김병준
    • 국제지역연구
    • /
    • 제22권4호
    • /
    • pp.3-18
    • /
    • 2018
  • 본 연구에서는 변동성반응가설에 입각한 T-GARCH 모형을 사용하여 최근 24년간의 일별 주식시장 수익률 자료를 바탕으로 OECD 29개 회원국들의 자본시장 충격반응도를 분석하였다. 연구모형에 사용한 독립변수로는 글로벌 금융위기의 진원지이며 세계시장 점유율도 가장 큰 미국시장 수익률을 사용하였다. 그 결과 OECD 회원국 중 미국으로부터의 수익률 전이효과가 가장 큰 나라는 프랑스, 핀란드, 멕시코의 순으로 나타났고 모형의 설명력은 캐나다, 멕시코, 프랑스 순으로 나타났다. 변동성반응가설에 입각한 충격반응의 크기로는 독일, 칠레, 스위스, 덴마크의 순으로 크게 나타났고 하락시장 충격에 대한 반응은 그리스, 영국, 호주, 일본의 순으로 크게 나타났다. NAFTA에 속한 캐나다와 멕시코는 예상대로 미국시장으로부터의 수익률 전이와 설명력이 크게 나타났으나 충격반응의 정도는 OECD 회원국들 중 하위권에 속하는 것으로 나타나 인근 지역의 국가들간의 더 큰 영향력이 존재한다는 중력이론을 지지하지 않았다. 한편, 2008년 미국발 글로벌 금융위기기간만을 고려한 소표본 분석을 통해서는 전체 기간과는 달리 북미 3국의 충격반응도가 서로 일관성이 없는 대신 유럽 각국의 충격반응도는 더욱 강하게 나타남으로써 미국발 충격이 주로 유럽지역에 미쳤음을 입증해 주었다.

Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석 (Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression)

  • 김선웅;최흥식
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.107-122
    • /
    • 2017
  • 주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.

Can the Skewed Student-t Distribution Assumption Provide Accurate Estimates of Value-at-Risk?

  • Kang, Sang-Hoon;Yoon, Seong-Min
    • 재무관리연구
    • /
    • 제24권3호
    • /
    • pp.153-186
    • /
    • 2007
  • It is well known that the distributional properties of financial asset returns exhibit fatter-tails and skewer-mean than the assumption of normal distribution. The correct assumption of return distribution might improve the estimated performance of the Value-at-Risk(VaR) models in financial markets. In this paper, we estimate and compare the VaR performance using the RiskMetrics, GARCH and FIGARCH models based on the normal and skewed-Student-t distributions in two daily returns of the Korean Composite Stock Index(KOSPI) and Korean Won-US Dollar(KRW-USD) exchange rate. We also perform the expected shortfall to assess the size of expected loss in terms of the estimation of the empirical failure rate. From the results of empirical VaR analysis, it is found that the presence of long memory in the volatility of sample returns is not an important in estimating an accurate VaR performance. However, it is more important to consider a model with skewed-Student-t distribution innovation in determining better VaR. In short, the appropriate assumption of return distribution provides more accurate VaR models for the portfolio managers and investors.

  • PDF

수산업관측사업의 가격안정화 효과 분석 (Price Stabilization Effect of the Fisheries Outlook Project)

  • 이상호;정원호
    • 수산경영론집
    • /
    • 제53권4호
    • /
    • pp.15-26
    • /
    • 2022
  • This paper analyzed the price stabilization before and after the fisheries outlook project for seaweed, flatfish, and abalone. First, the stabilization effect was analyzed through the price variation coefficient before and after the observation project. In terms of the variation coefficient, there was no effect that the price was stabilized through the seaweed outlook project. However, it can be seen that flatfish and abalone have a price-stabilizing effect. Second, as a result of analyzing the price stabilization effect through the improved ARMA-T-GARCH model, it was confirmed that seaweed was not statistically significant while flatfish and abalone had a price stabilization effect by statistically significantly reducing volatility of real prices after the introduction of the fisheries outlook project. Third, as a result of analyzing the factors affecting price stability, it was found that the price of seaweed was stabilized after the WTO, but the Japanese earthquake expanded the price volatility. In the case of flatfish, it was analyzed that the price stabilized after the WTO and the Great Japanese Earthquake. Finally, the price of abalone has stabilized since the WTO and the Great Japanese Earthquake.