• Title/Summary/Keyword: T-DNA transfer

Search Result 93, Processing Time 0.036 seconds

Analysis of junction between T-DNA and plant genome in insect resistance GM Chinese cabbage (해충저항성 GM 배추에서 T-DNA와 식물체 게놈의 인접 부위 분석)

  • Lim, Sun-Hyung;Park, Seung-Hye;Kim, Jung-Hwan;Kim, Na-Young;Won, So-Youn;Lee, Si-Myung;Shin, Kong-Sik;Woo, Hee-Jong;Kim, Dong-Hern;Cho, Hyun-Suk
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.101-108
    • /
    • 2008
  • The Agrobacterium-mediated transformation has been successfully used method to introduce foreign genes into some monocotyledonous as well as a large number of dicotyledonous plants genome, We developed transgenic Chinese cabbage plants with insect-resistance gene, modified CryIAc, by Agrobacterium-transformation and confirmed transgene copy number by Southern blot analysis. We confirmed that twenty-nine out of 46 transgenic Chinese cabbage plants have single copy of CryIAc. To obtain the sequences information on the transferred DNA (T-DNA) integration into plant genome, we analyzed left border (LB) flanking sequences by genome walking (GW) PCR method. Out of 46 transgenic Chinese cabbage plants examined, 37 carried the vector backbone sequences. This result indicates that the transfer of the vector backbone from the binary vectors resulted mainly from inefficient termination of LB site. Analysis of T-DNA LB flanking region of 9 transgenic Chinese cabbage plants without vector backbone revealed that all LB ends were not conserved and nucleotides up to 36bp from the LB cleavage site were deleted.

Sperm-Mediated Gene Transfer by Injection of Sperm or Sperm Head into Porcine Oocytes

  • S.Y. Ahn;Lee, H.T.;K. S. Chung
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.56-56
    • /
    • 2001
  • The exogenous gene transfer by intracytoplasmic sperm injection (ICSI) procedure has been recently used to produce transgenic mice and pigs. Sperm-mediated DNA transfer has the potential to markedly simplify the generation of transgenic animals. This method may serve as an alternative to the pronucleus injection of DNA for the production of transgenic pigs. Therefore, in this study, we investigated the expression of transgene after co-injection of spermatozoon or sperm head with green fluorescent protein (GFP) gene into in vitro matured porcine oocytes. Spermatozoon and sperm head, that was obtained by sonication, were treated with 0.03% Triton X-100 to remove the membrane. They were preincubated with linearized pEGFP-N1 for 1 min, and then embryos cultured NCSU23 medium for 2.5 days after co-injected of sperm and DNA. We monitored expression of GFP in embryos under epifluorescent microscope. The remove of sperm membrane did not alter the developmental competence of embryos after ICSI. At 7 days following injection, the rates of blastocysts following injection of intact sperm (15.0%), and of sperm with disrupted membrane (14.2%) were higher than that following IVF (10.0%). Porcine oocytes injected with sperm which co-cultured with DNA concentration of 1, 0.1, and 0.01 ng were 60, 65.7 and 75% and 18.5, 37.4 and 22.2% for rates of cleavage and GFP expression, respectively. In vitro matured porcine oocytes injected with sperm and isolated sperm head resulted in 69 and 59.7% of cleavage rates, respectively The rates of embryo GFP expressed did not significantly different between sperm (20.4%) and sperm head (20.0%) injection. The transgenic embryos with the clusters of positive blastomeres were observed under fluorescent microscope. Most of embryos expressed GFP gene showed mosaicism. They showed GFP expression at 1/4, 2/4 and 3/4 of blastomeres at the 4-cell stage. Among these 4-cell embryos, the expression rate of 1/4 blastomere group (54.6%) was higher than the other groups (15.3-30.7%). These results indicate that membrane disrupted sperm could attach with exogenous DNA, and that this procedure may be useful to introduce foreign gene into porcine oocytes. Therefore, our data suggest that the ICSI car be a useful tool to efficiently produce transgenic pig as well as other mammals.

  • PDF

Cock Spermatozoa Serve as the Gene Vector for Generation of ransgenic Chicken (Gallus gallus)

  • Yang, C.C.;Chang, H.S.;Lin, C.J.;Hsu, C.C.;Cheung, J.I.;Hwu, L.;Cheng, W.T.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.7
    • /
    • pp.885-891
    • /
    • 2004
  • To evaluate the feasibility of using sperm-mediated gene transfer (SMGT) for carrying foreign gene into chicken oocyte, a reporter gene, CX-EGFP, was used in this study. The reporter gene was first mixed with liposome or liposome-like compound and the mixtures were further combined with ejaculated cock spermatozoa. The spermatozoa treated with liposome and CX-EGFP mixture was subsequently coincubated with DNaseI to remove the extra DNA which insured the authenticity of positive signals. The treated sperms were then subjected to transgene (reporter gene) existence analysis and artificial insemination of laying hens. Obtained results indicated that the spermatozoa were able to take-in the foreign DNA; which was confirmed by polymerase chain reaction and Southern blot analysis. In the following experiment, fresh ejaculated sperms were mixed with CX-EGFP-liposome or CX-EGFP-liposome-like complex then used for artificial insemination of each of six laying hens. Eggs laid between day-3 and day-7 post insemination were collected. Newly hatched chicks, two out of 53 from CX-EGFP/liposome treated group and two out of 21 from CXEGFP/liposome-like treated group, were proven to be transgenic. This study suggests that SMGT is a powerful method for generating transgenic chickens.

Soluble Expression of the Fucosyltransferase Gene from Helicobacter pylori in Escherichia coli by Co-expression of Molecular Chaperones (샤페론단백질동시발현기술을이용하여 Helicobacter pylori 유래의 fucosyltransferase의수용성생산)

  • Lee, A Reum;Li, Ling;Shin, So-Yeon;Moon, Jin Seok;Eom, Hyun-Ju;Han, Nam Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.212-218
    • /
    • 2015
  • Fucosyltransferases (FucTs) catalyze fucosyl transfer from guanosine-diphosphate fucose (GDP-β-L-fucose) to acceptor molecules to form fucosyloligosaccharides with α-glycosidic linkages. However, when FucT genes have been expressed in Escherichia coli, most cases have resulted in the production of inclusion bodies. In this study, to overcome this drawback, molecular chaperones were co-expressed with α1,2-fucosyltransferase (FucT2) in E. coli. For this, the pACYC184 vector, having genes for chaperones such as GroEL, GroES, DnaK, DnaJ, and GrpE, were transformed into E. coli BL21 (DE3) star harboring pHFucT2, including the FucT2 gene from Helicobacter pylori 26695. The results from SDS-PAGE showed that 5 chaperones were successfully expressed and the soluble fraction of FucT2 was also increased. HPLC analysis revealed that the coexpression of chaperone proteins resulted in a 5-fold increase in the total activity of fucosyltransferase in E. coli. In conclusion, the FucT2 expression system developed in this study can be used as a useful tool for the synthesis of fucosyloligosaccharides.

Association of UCP2 Polymorphisms with Type 2 Diabetes in Korean Subjects

  • Kim, Su-Won;Yoo, Min
    • Biomedical Science Letters
    • /
    • v.14 no.4
    • /
    • pp.239-242
    • /
    • 2008
  • Obesity results from a combination of genetic, environmental, and behavioral factors. Uncoupling proteins (UCP) are members of the larger family of mitochondrial anion carrier proteins (MACP). UCP separates oxidative phosphorylation from ATP synthesis with energy dissipated as heat, also referred to as the mitochondrial proton leak. UCP facilitates the transfer of anions from the inner to the outer mitochondrial membrane and the return transfer of protons from the outer to the inner mitochondrial membrane. Therefore, we investigated the genotype for the G>A polymorphism at the position -866 of UCP2 gene in Koreans and compared genotype of patients with control group. 50 patients (Male 22, Female 28), who previously underwent type 2 diabetcs (T2DM) and 30 controls (Male 14, Female 16) participated in this study. There was a weak significant association between -866 G>A polymorphism in UCP2 gene and T2DM. The present study shows that UCP2 -866 G>A polymorphism may not be associated with the pathogenesis of T2DM as opposed to the previous reports in other countries. Further studies with larger population may be needed for the development of diagnostic methods at genetic level such as DNA chip.

  • PDF

The Hybrid Formation between Aspergillus oryzae var. oryzae and Penicillium chrysogenum by Nuclear Transfer and the Production of Alkaline Protease. (핵전이에 의한 Aspergillus oryzae var. oryzae와 Penicillium chrysogenum의 잡종형성 및 Alkaline Protease생성)

  • 양영기;강희경;임채영;문명님
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.290-296
    • /
    • 1998
  • Interspecific hybrids between Aspergillus oryzae var. oryzae and Penicillium chrysogenum (Tyr$\^$-/), high alkaline protease producing fungi, were obtained by nuclear transfer technique. Nuclei isolated from the wild type Aspergillus oryzae var. oryzae strain were transferred into auxotrophic Penicillium chrysogenum mutants and selected the new strains showing an increased protein degrading capability. Maximum production of protoplasts were obtained by 1% Novozym 234 at $30^{\circ}C$ for 3 hours and the most effective osmotic stabilizers for the isolation of protoplasts were 0.6M KCl. Frequencies of hybrid formation by nuclear transfer were 1.3${\times}$10$\^$-3/∼2.8${\times}$10$\^$-3/. They could be suggested as an aneuploid by the observation of genetic stability, conidial size, DNA content, and nuclear strain. The hybrids showed 1.1~2.2 fold higher alkaline pretense activities than parental strains.

  • PDF

Complete Genome Sequence of Levilactobacillus brevis KL251 Isolate from Kimchi

  • Kiyeop Kim;Da Jeong Shin;Junghee Lee;Sejong Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.18-22
    • /
    • 2024
  • In this study, we performed whole-genome sequencing of Levilactobacillus brevis KL251 (KL251) isolated from kimchi. The KL251 genome, characterized by a circular chromosome spanning 2,345,062 base pairs with a GC content of 45.78%, was analyzed. KL251 contains 2,275 coding DNA sequences (CDSs), 56 transfer RNAs (tRNAs), and 4 ribosomal RNAs (rRNAs). Genes associated with gamma-aminobutyric acid (GABA) production and CRISPR-Cas systems were identified and could potentially be used for GABA synthesis and defense against foreign DNA. Additionally, the presence of functional genes involved in isoprenoid biosynthesis, glutathione generation, and redox sensing showed that cellular metabolism and stress responses were important characteristics of this genome. These genomic findings suggest that the KL251 strain could potentially have several applications, including food fermentation, probiotics, dairy product starters, and the development of health-enhancing products.

Interaction between Parasitophorous Vacuolar Membrane-associated GRA3 and Calcium Modulating Ligand of Host Cell Endoplasmic Reticulum in the Parasitism of Toxoplasma gondii

  • Kim, Ji-Yeon;Ahn, Hye-Jin;Ryu, Kyung-Ju;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.4
    • /
    • pp.209-216
    • /
    • 2008
  • A monoclonal antibody against Toxoplasma gondii of Tg556 clone (Tg556) blotted a 29 kDa protein, which was localized in the dense granules of tachyzoites and secreted into the parasitophorous vacuolar membrane (PVM) after infection to host cells. A cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg556, and the full-length was completed by 5'-RACE of 2,086 bp containing an open reading frame (ORF) of 669 bp. The ORF encoded a polypeptide of 222 amino acids homologous to the revised GRA3 but not to the first reported one. The polypeptide has 3 hydrophobic moieties of an N-terminal stop transfer sequence and 2 transmembrane domains (TMD) in posterior half of the sequence, a cytoplasmic localization motif after the second TMD and an endoplasmic reticulum (ER) retrival motif in the C-terminal end, which suggests GRA3 as a type III transmembrane protein. With the ORF of GRA3, yeast two-hybrid assay was performed in HeLa cDNA expression library, which resulted in the interaction of GRA3 with calcium modulating ligand (CAMLG), a type II transmembrane protein of ER. The specific binding of GRA3 and CAMLG was confirmed by glutathione S-transferase (GST) pull-down and immunoprecipitation assays. The localities of fluorescence transfectionally expressed from GRA3 and CAMLG plasmids were overlapped completely in HeLa cell cytoplasm. In immunofluorescence assay, GRA3 and CAMLG were shown to be co-localized in the PVM of host cells. Structural binding of PVM-inserted GRA3 to CAMLG of ER suggested the receptor-ligand of ER recruitment to PVM during the parasitism of T. gondii.

Optimization of Agrobacterium tumefaciens-Mediated Transformation of Xylaria grammica EL000614, an Endolichenic Fungus Producing Grammicin

  • Jeong, Min-Hye;Kim, Jung A.;Kang, Seogchan;Choi, Eu Ddeum;Kim, Youngmin;Lee, Yerim;Jeon, Mi Jin;Yu, Nan Hee;Park, Ae Ran;Kim, Jin-Cheol;Kim, Soonok;Park, Sook-Young
    • Mycobiology
    • /
    • v.49 no.5
    • /
    • pp.491-497
    • /
    • 2021
  • An endolichenic fungus Xylaria grammica EL000614 produces grammicin, a potent nematicidal pyrone derivative that can serve as a new control option for root-knot nematodes. We optimized an Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for X. grammica to support genetic studies. Transformants were successfully generated after co-cultivation of homogenized young mycelia of X. grammica with A. tumefaciens strain AGL-1 carrying a binary vector that contains the bacterial hygromycin B phosphotransferase (hph) gene and the eGFP gene in T-DNA. The resulting transformants were mitotically stable, and PCR analysis showed the integratin of both genes in the genome of transformants. Expression of eGFP was confirmed via fluorescence microscopy. Southern analysis showed that 131 (78.9%) out of 166 transformants contained a single T-DNA insertion. Crucial factors for producing predominantly single T-DNA transformants include 48 h of co-cultivation, pretreatment of A. tumefaciens cells with acetosyringone before co-cultivation, and using freshly prepared mycelia. The established ATMT protocol offers an efficient tool for random insertional mutagenesis and gene transfer in studying the biology and ecology of X. grammica.

Analysis of right border flanking sequence in transgenic chinese cabbage harboring integrated T-DNA (Agrobacterium을 이용하여 형질전환시킨 배추에서 T-DNA Right Border 인접염기서열 분석)

  • Ahn, Hong-Il;Shin, Kong-Sik;Woo, Hee-Jong;Lee, Ki-Jong;Kim, Hyo-Sung;Park, Yong-Hwan;Suh, Seok-Cheol;Cho, Hyun-Suk;Kweon, Soon-Jong
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • We developed 14 transgenic lines of Chinese cabbage (Brassica rapa) harboring the T-DNA border sequences and CryIAc1 transgene of the binary vector 416 using Agrobacterium tumefaciens-mediated DNA transfer. Six lines had single copy cryIAc1 gene and four of them contained no vector backbone DNA. Of the left border (LB) flanking sequences six nucleotides were deleted in transgenic lines 416-2 and 416-3, eleven nucleotides in line 416-9, and 65 nucleotides including the whole LB sequences in line 416-17, respectively. And we defined 499 bp of genomic DNA (gDNA) of transformed Chinese cabbage, and blast results showed 96% homology with Brassica oleracea sequences. PCR with specific primer for the right border (RB) franking sequence revealed 834 bp of PCR product sequence, and it was consisted of 3' end of cryIAc1, nosterminal region and 52 bp of Chinese cabbage genomic DNA near RB. RB sequences were not found and the 58 nucleotides including 21 bp of nos-terminator 3' end were deleted. Also, there were deletion of 10 bp of the known genomic sequences and insertion of 65 bp undefined genomic sequences of Chinese cabbage in the integration site. These results demonstrate that the integration of T-DNA can be accompanied by unusual deletions and insertions both in transgenic and genomic sequences.