• Title/Summary/Keyword: T cell survival

Search Result 501, Processing Time 0.031 seconds

Exophagectomy Combined with Resectiion of Invaded Aorta for T4 Esophageal Carcinoma. (대동맥 침습이있었던 식도암의 절제수술)

  • 신화균;이두연;김상진;김부연;이성수;금기창
    • Journal of Chest Surgery
    • /
    • v.33 no.1
    • /
    • pp.103-106
    • /
    • 2000
  • Advanced esophageal carcinoma which invades into adjacent organs are classified as T4 esophageal cancer,. Its complete resection without residual tumor would be difficult. Preoperative chemoradiotherapy and combined modality therapy are being tried to improve survival in patients with T4 esophageal carcinoma. In a 74-year-old man a 6cm squamous cell carcinoma of the esophagus with invasion of the thoracic aorta was detected (T4). After neoadjuvant chemoradiotherapy the patient was operated on using bio-pump with aorto-femoral cannulation. The invased segment of descending aorta was resected and reconstructed with a graft. The tumor was resected and EG anastomosis was done. The postoperative period was uneventful the patient was discharged after good condition and has been well to now.

  • PDF

THE SOJOURN TIME AND RELATED CHARACTERISTICS OF THE AGE-DEPENDENT BRANCHING PROCESS

  • Kumar, B.-Krishba;Vijayakumar, A.
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.157-172
    • /
    • 2004
  • An age-dependent branching process where disasters occur as a renewal process leading to annihilation or survival of all the cells, is considered. For such a process, the total mean sojourn time of all the cells in the system is analysed using the regeneration point technique. The mean number of cells which die in time t and its asymptotic behaviour are discussed. When the disasters arrival as a Poisson process and the lifetime of the cells follows exponential distribution, elegant inter- relationships are found among the means of (i) the total number of cells which die in time t (ii) the total sojourn time of all cells in the system upto time t and (iii) the number of living cells at time t. Some of the existing results are deduced as special cases for related processes.

Effects of aqueous extract isolated from Platycodon grandiflorum against oxidative stress in rat primary hepatocytes

  • Choi, Chul-Yung;Lee, Kyung-Jin;Jeong, Hye-Gwang
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.288.1-288.1
    • /
    • 2002
  • Herbal medicines are increasingly being utilized to treat a wide variety of disease processes. The aim of this study was to evaluate the ability of aqueous extract from the roots of Platycodon grandiflorum A. DC (Campanulaceae). Changkil (CK). to affect cellular response in primary cultures of rat hepatocytes to t-butyl hydroperoxide (t-BHP) induced oxidative stress and hepatotoxicity. CK-treated cells showed an increased resistance to oxidative challenge. as revealed by a higher percent of survival capacity in respect to control cells. CK added prior or simultaneously with I-BHP reduced enganced lipid peroxidation measured as production of malondialdehyde and enhnaced intracellular reduced glutathinoe depletion by t-BHP. Furhtermore. CK protected from the t-BHP-induced intracellular generation of reactive oxygen species assessde by montioting dichlorodihydrofluorescein fluorescence. it can be concluded that CK exerts an antioxidant action insice the cell. responsible for the abserved modulation of the cellular response to oxidative challenge. and CK have a marked anitioxdative and hepatoprotective potency.

  • PDF

Effects of Water Extract from fermented Chaga Mushroom(Inonotus obliquus) on the Proliferation of Human Cancer Cell Lines. (발효 차가버섯 추출물이 인체 종양세포주 증식에 미치는 영향)

  • Cha, Jae-Young;Park, Sang-Hyun;Heo, Jin-Sun;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.671-677
    • /
    • 2007
  • This study was performed to investigate the effect of the water-extract from non-fermented or fermented Chaga mushrooms (Inonotus obliquus) on the proliferation and apoptosis of the NIH3T3 mouse normal fibroblast cells and various human cancer cell lines including HCT-15 human colon carcinoma, AGS human gastric carcinoma, MCF-7 human breast adenocarcinoma, Hep3B human hepatocellular carcinoma and HeLa human cervical carcinoma using MTT(3-[4,5-dimethylthiazol-2-yl] -2,5-diphenyl tetrazolium bromide) assay and DNA fragmentation. In an anti-cancer test using various human cancer cells, fermented Chaga mushroom extract showed higher antiproliferating effect than that of non-fermented Chaga mushroom extract. Mouse normal NIH3T3 cells were exhibited 80% above survival under fermented or non-fermented Chngn mushroom extract of various concentrations(0, 0.5 and 1 mg/ml). Fermented Chaga mushroom extract significantly inhibited cell growth on HCT-15 cells in a dose-dependent manner. HCT-15 cells treated with non-fermented or fermented Chaga mushrooms extract produced a distinct oligonucleosomal ladder with different sizes of DNA fragments, a typical characteristic of cells undergoing apoptosis. These results suggest that fermented Chaga mushroom extract suppresses growth of HCT-15 human colon carcinoma cells through apoptosis.

Weekly Topotecan for Recurrent Small Cell Lung Cancer - a Retrospective Anatolian Medical Oncology Group Study

  • Altinbas, Mustafa;Kalender, Mehmet Emin;Oven, Basak;Sevinc, Alper;Karaca, Halit;Kaplan, M. Ali;Alici, Suleyman;Arpaci, Erkan;Yildiz, Ramazan;Uncu, Dogan;Camci, Celalettin;Gumus, Mahmut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2909-2912
    • /
    • 2012
  • Aim: To evaluate efficacy and tolerability of topotecan treatment for recurrent small cell lung carcinoma. Patients and Methods: A total of 62 patients were evaluated retrospectively. Statistical analysis was performed using GraphPad Instat (version 3.05). Results: DFifty five of patients (89%) were male and 7 (11%) were female. Median age was $56.7{\pm}9.3$ (34-75). Forty eight of patients (80%) were extensive stage (ES) at the time of diagnosis. Fifty of the patients (80.6 Medical Oncology Clinic) were given median 5.36 cycles of cisplatin-etoposide (2-8 cycles). Time to recurrence was $15.6{\pm}6.13$ weeks in patients with limited stage (LS) and $6.3{\pm}3.82$ weeks in extensive stage (ES) (p<0.0001). Overall survival was $14.0{\pm}6.08$ months in ES and $17.9{\pm}6.88$ months in LS. The difference between two groups was statistically meaningful (p=0.0447). The overall survival of the patients was $14.8{\pm}6.43$ months (4.5-40 months). In terms of survival, there was no difference between males and females (p=0.1171). In 17 (27%) patients who were refractory to topotecan or in whom progression occurred other chemotherapies were used. Conclusion: Small cell lung cancer is chemosensitive, but recurrences occur in short time. Other chemotherapy regimens are used in progression. Topotecan is one of them. Patients who were young and in whom recurrences occur late had given better response to topotecan. Because of the retrospective nature of the study, we couldn't reach the records exactly and consequently, rate and duration of response couldn't be calculated. In recurrent SCLC topotecan is one of the treatment choices. But both hematological and non hematological side effects should be taken into consideration.

Effects of Tumor Microenvironmental Factors on DNA Methylation and Radiation Sensitivity in A549 Human Lung Adenocarcinoma

  • Oh, Jung-Min;Kim, Young-Eun;Hong, Beom-Ju;Bok, Seoyeon;Jeon, Seong-Uk;Lee, Chan-Ju;Park, Dong-Young;Kim, Il Han;Kim, Hak Jae;Ahn, G-One
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.2
    • /
    • pp.66-74
    • /
    • 2018
  • Background: Tumor response to anticancer therapies can much be influenced by microenvironmental factors. In this study, we determined the effect of these microenvironmental factors on DNA methylation using A549 human lung adenocarcinoma cell line. Materials and Methods: We subjected A549 cells to various conditions mimicking tumor microenvironment including hypoxia, acidosis (sodium lactate), oxidative stress ($H_2O_2$), bystander effect (supernatant from doxorubicin (Dox)-treated or irradiated cells), and immune cell infiltration (supernatant from THP-1 or Jurkat T cells). Genomic DNA was isolated from these cells and analyzed for DNA methylation. Clonogenic cell survival, gene expression, and metabolism were analyzed in cells treated with some of these conditions. Results and Discussion: We found that DNA methylation level was significantly decreased in A549 cells treated with conditioned media from Dox-treated cells or Jurkat T cells, or sodium lactate, indicating an active transcription. To determine whether the decreased DNA methylation affects radiation sensitivity, we exposed cells to these conditions followed by 6 Gy irradiation and found that cell survival was significantly increased by sodium lactate while it was decreased by conditioned media from Dox-treated cells. We further observed that cells treated with conditioned media from Dox-treated cells exhibited significant changes in expression of genes including BAX and FAS (involved in apoptosis), NADPH dehydrogenase (mitochondria), EGFR (cellular survival) and RAD51 (DNA damage repair) while sodium lactate increased cellular metabolism rather than changing the gene expression. Conclusion: Our results suggest that various tumor microenvironmental factors can differentially influence DNA methylation and hence radiosensitivity and gene expression in A549 cancer cells.

Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma

  • Keerakarn Somsuan;Siripat Aluksanasuwan
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.22.1-22.15
    • /
    • 2023
  • Kidney renal clear cell carcinoma (KIRC) is one of the most aggressive cancer type of the urinary system. Metastatic KIRC patients have poor prognosis and limited therapeutic options. Ankyrin 3 (ANK3) is a scaffold protein that plays important roles in maintaining physiological function of the kidney and its alteration is implicated in many cancers. In this study, we investigated differential expression of ANK3 in KIRC using GEPIA2, UALCAN, and HPA databases. Survival analysis was performed by GEPIA2, Kaplan-Meier plotter, and OS-kirc databases. Genetic alterations of ANK3 in KIRC were assessed using cBioPortal database. Interaction network and functional enrichment analyses of ANK3-correlated genes in KIRC were performed using GeneMANIA and Shiny GO, respectively. Finally, the TIMER2.0 database was used to assess correlation between ANK3 expression and immune infiltration in KIRC. We found that ANK3 expression was significantly decreased in KIRC compared to normal tissues. The KIRC patients with low ANK3 expression had poorer survival outcomes than those with high ANK3 expression. ANK3 mutations were found in 2.4% of KIRC patients and were frequently co-mutated with several genes with a prognostic significance. ANK3-correlated genes were significantly enriched in various biological processes, mainly involved in peroxisome proliferator-activated receptor (PPAR) signaling pathway, in which positive correlations of ANK3 with PPARA and PPARG expressions were confirmed. Expression of ANK3 in KIRC was significantly correlated with infiltration level of B cell, CD8+ T cell, macrophage, and neutrophil. These findings suggested that ANK3 could serve as a prognostic biomarker and promising therapeutic target for KIRC.

Ice-Binding Protein Derived from Glaciozyma Can Improve the Viability of Cryopreserved Mammalian Cells

  • Kim, Hak Jun;Shim, Hye Eun;Lee, Jun Hyuck;Kang, Yong-Cheol;Hur, Young Baek
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.1989-1996
    • /
    • 2015
  • Ice-binding proteins (IBPs) can inhibit ice recrystallization (IR), a major cause of cell death during cryopreservation. IBPs are hypothesized to improve cell viability after cryopreservation by alleviating the cryoinjury caused by IR. In our previous studies, we showed that supplementation of the freezing medium with the recombinant IBP of the Arctic yeast Glaciozyma sp. (designated as LeIBP) could reduce post-thaw hemolysis of human red blood cells and increase the survival of cryopreserved diatoms. Here, we showed that LeIBP could improve the viability of cryopreserved mammalian cells. Human cervical cancer cells (HeLa), mouse fibroblasts (NIH/3T3), human preosteoblasts (MC3T3-E1), Chinese hamster ovary cells (CHO-K1), and human keratinocytes (HaCaT) were evaluated. These mammalian cells were frozen in dimethyl sulfoxide (DMSO)/fetal bovine serum (FBS) solution with or without 0.1 mg/ml LeIBP at a cooling rate of -1℃/min in a -80℃ freezer overnight. The minimum effective concentration (0.1 mg/ml) of LeIBP was determined, based on the viability of HeLa cells after treatment with LeIBP during cryopreservation and the IR inhibition assay results. The post-thaw viability of mammalian cells was examined. In all cases, cell viability was significantly enhanced by more than 10% by LeIBP supplementation in 5% DMSO/5% FBS: viability increased by 20% for HeLa cells, 28% for NIH/3T3 cells, 21% for MC3T3-E1, 10% for CHO-K1, and 20% for HaCaT. Furthermore, addition of LeIBP reduced the concentrations of toxic DMSO and FBS down to 5%. Therefore, we demonstrated that LeIBP can increase the viability of cryopreserved mammalian cells by inhibiting IR.

Hepatoprotective Effects of Poly Herbal Formulation (Hepa-1000) on t-BHP Induced Toxicity in Human Hepatoma Cells (간기능 개선용 복합 식물 추출물(Hepa-1000)의 tert-butyl hydroperoxide(t-BHP)로 유도한 간세포 독성에 대한 보호 효과)

  • Lee, Eu-Gene;Kim, Kyung-Bum;Jeong, Jong-Moon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1121-1126
    • /
    • 2006
  • In the present study, the potential hepatoprotective effects of poly herbal formulation, Hepa-1000, against oxidative damages induced by t-BHP were evaluated in HepG2 cells in order to relate in vitro antioxidant activity with cytoprotective effects. The t-BHP induced considerable cell damage in HepG2 cells was shown by significant glutamic oxaloacetic transaminase (GOT) and lactate dehydrogenase (LDH) leakage, and increased lipid peroxidation. Hepa-1000-treated cells showed an increased resistance to oxidative challenge, as revealed by higher survival capacity than the one of control cells against t-BHP induced oxidative stress and hepatotoxicity. In addition, the Hepa-1000 had hepatoprotective effects lowering the activity of GOT and LDH, simultaneously. That is, it could inhibit the cell membrane damages resulting in the increased activities of GOT and LDH in the cell culture media. Furthermore, the Hepa-1000 could reduce t-BHP enhanced lipid peroxidation, which was evaluated by measuring the production of malonedialdehyde. Based on the data described above, it could be suggested that the Hepa-1000 has significant hepatoprotective effects and plays a protective role against lipid peroxidation by free radicals.

Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment

  • Jialin Feng;Oliver J. Read;Albena T. Dinkova-Kostova
    • Molecules and Cells
    • /
    • v.46 no.3
    • /
    • pp.142-152
    • /
    • 2023
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of proinflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.