• Title/Summary/Keyword: T cell migration

Search Result 156, Processing Time 0.031 seconds

Polymorphism in Macrophage Migration Inhibitory Factor -173GC in Pediatric Patients with Autoimmune Hepatitis

  • Alsayed, Mona Abdel Latif;Elbeah, Shymaa Mohsen;El-Desoky, Manal M.;Elziny, Shereen Magdy;Megahed, Ahmed
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • Purpose: Autoimmune hepatitis (AIH) is a chronic disease that may lead to cirrhosis. The immunopathogenesis of AIH is not fully understood and it mainly involves T-cell mediated mechanism. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that promotes T cell response and its polymorphism may serve as a severity marker of AIH. No previous study has considered investigating MIF polymorphism in children with AIH. Methods: Forty-two children with definite diagnosis of AIH were enrolled along with 100 age and sex matched controls. All participants were tested for polymorphism at -173GC (rs755622) of MIF gene. All patients received the standard protocol of steroid plus azathioprine to achieve remission. Liver biopsy was performed at time of diagnosis for all patients and only 18 of them underwent a second biopsy after treatment. Results: No statistically significant differences in the frequency of the genotypes GG and GC or in allele distribution were found in both patient and control groups (p=0.590, 0.640 respectively). Initial alanine aminotransferase (ALT) levels at the time of presentation was significantly higher in the GC group than GG group (p=0.020). GC genotype significantly correlated with disease relapse (r=0.41, p=0.007). Regression of necroinflammation and the fibrosis score in the second liver biopsy was statistically significant in the GG group (p<0.0001, p=0.010 respectively). Conclusion: MIF -173GC polymorphism is associated with clinically significant markers of pediatric AIH, including increased initial serum ALT levels, may help predict necroinflammatory/fibrosis regression effectively, following immunosuppressive treatment.

Anti-migration Effects of the Daesiho-tang (Da Chai Hu-Tang) Water Extract in Cancer Cells by Regulating Macrophage Polarization (대식세포 분화 조절을 통한 대시호탕의 암세포 전이 억제 효과)

  • Jae-Hoon Jeong;Shin-Hyung Park
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.32-37
    • /
    • 2024
  • The aim of this study was to investigate the role of Daesiho-tang (Da Chai Hu-Tang) water extract (DSTE) in regulating chronic stress-induced cancer progression, focusing on its activity in modulating tumor-associated macrophages (TAMs). Different stimuli can polarize TAMs into immune-stimulating M1 macrophages or immunosuppressive M2 macrophages. During cancer progression, M2 phenotype increases and supports tumor growth, angiogenesis and metastasis. Notably, chronic stress-induced catecholamines promote M2 macrophage polarization. In this study, we investigated whether DSTE regulates norepinephrine (NE)-induced M2 macrophage polarization in RAW 264.7 mouse macrophage cells. Even though NE itself did not increase the expression of M2 markers, the conditioned media of NE-treated 4T1 mouse breast cancer cells (NE CM) significantly up-regulated M2 markers in RAW 264.7 cells, suggesting that NE-regulated cancer cell secretome stimulated M2 polarization. However, such increase was abrogated by DSTE. NE CM also induced phosphorylation of signal transducer and activator of transcription 6 (STAT6) in RAW 264.7 cells, which was clearly reversed by pretreatment with DSTE, demonstrating that DSTE inhibited M2 polarization by inactivating STAT6. Finally, M2-polarized RAW264.7 cells by NE CM markedly increased the migration of 4T1 cells. However, such increase was completely reversed by co-treating RAW264.7 cells with NE CM and DSTE, indicating that DSTE attenuated cancer cell migration by blocking M2 polarization. Taken together, our results suggest a probable use of DSTE for cancer patients under chronic stress by regulating M2 macrophage polarization.

Effects of Houttuynia cordata Thunb Extract Inhibits on the Migration and Proliferation of Vascular Smooth Muscle Cell (어성초 추출물의 혈관 평활근 세포 이주 및 증식 억제 활성에 관한 연구)

  • Han, Jung-Ho;Park, Seon-Nam;Yoon, Mi-So;Choi, Ok-Byung
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.2
    • /
    • pp.182-186
    • /
    • 2011
  • Houttuynia cordata Thunb.[H.cordata]belonging to Saururaceae, is a wild medicinal herb of perennial plants, and grows well in a place with a lot of shade and moisture. The medical action of H.cordata is reported to have an antitumer effect, toxicity-suppressive effect, antifungal effect, diuretic effect, and antioxidative action, but its effect hasn't been reported on cardiovascular diseases, such as ateriosclerosis and hypertension yet. This study intended to confirm the effect of the water extract of H.cordata on the migration and proliferation of rat aortic smooth muscle cells. Such results show that the water extract of H.cordata suppresses the migration and proliferation of rat aortic smooth muscle cells. It is believed that a useful clue will be offered later to the prevention of cardiovascular diseases such as ateriosclerosis and hypertension, and the development of their medicines on the basis of the fact.

Biological Effects of Vinca minor extract; Tyrosinase inhibition, stimulation of ROS generation and increasement of cell migration activity in keratinocytes

  • Kim, Jun-Sub;Yu, Il-Hwan;Joo, Ji-Hye;Nam, Gyeong Hoe;Jung, Kyung-Hwan;Chung, Young Soo;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.788-794
    • /
    • 2016
  • Vinca alkaloids from plant Vinca minor have been investigated for their effects of tyrosinase inhibition, stimulation of ROS generation and increasement of cell migration activity. The methanolic crude extract and the water-soluble fraction exhibited $IC_{50}$ value of 3.1 mg/mL and 2.1 mg/mL. Vinca minor extract treatment significantly increased ROS levels in HaCaT cells, in a concentration-dependent manner. Treatments of Vinca minor extract led to increase wound closure when compared with non-treatment. Low dose (0.1% or 0.3%) of extracts have not significantly affected, compared with that in controls. By contrast, 0.5% extract have dramatic effect on wound healing activity of keratinocytes. Effects of Vinca minor extract in a filter-based cell mobility assay appear similar to that of wound closure assay, which suggests that the Vinca minor extract have wound healing effects on skin.

Immunotherapy with methyl gallate, an inhibitor of Treg cell migration, enhances the anti-cancer effect of cisplatin therapy

  • Kim, Hyunseong;Lee, Gihyun;Sohn, Sung-Hwa;Lee, Chanju;Kwak, Jung Won;Bae, Hyunsu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.261-268
    • /
    • 2016
  • $Foxp3^+$ $CD25^+CD4^+$ regulatory T (Treg) cells are crucial for the maintenance of immunological self-tolerance and are abundant in tumors. Most of these cells are chemo-attracted to tumor tissues and suppress anti-tumor responses inside the tumor. Currently, several cancer immunotherapies targeting Treg cells are being clinically tested. Cisplatin is one of the most potent chemotherapy drugs widely used for cancer treatment. While cisplatin is a powerful drug for the treatment of multiple cancers, there are obstacles that limit its use, such as renal dysfunction and the development of cisplatin-resistant cancer cells after its use. To minimize these barriers, combinatorial therapies of cisplatin with other drugs have been developed and have proven to be more effective to treat cancer. In the present study, we evaluated the effect of the combination therapy using methyl gallate with cisplatin in EL4 murine lymphoma bearing C57BL/6 mice. The combinatorial therapy of methyl gallate and cisplatin showed stronger anti-cancer effects than methyl gallate or cisplatin as single treatments. In Treg cell-depleted mice, however, the effect of methyl gallate vanished. It was found that methyl gallate treatment inhibited Treg cell migration into the tumor regardless of cisplatin treatment. Additionally, in both the normal and cisplatin-treated tumor-bearing mice, there was no renal toxicity attributed to methyl gallate treatment. These findings suggest that methyl gallate treatment could be useful as an adjuvant method accompanied with cisplatin therapy.

Benzidine Induces Epithelial-Mesenchymal Transition of Human Bladder Cancer Cells through Activation of ERK5 Pathway

  • Sun, Xin;Zhang, Tao;Deng, Qifei;Zhou, Qirui;Sun, Xianchao;Li, Enlai;Yu, Dexin;Zhong, Caiyun
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.188-197
    • /
    • 2018
  • Benzidine, a known carcinogen, is closely associated with the development of bladder cancer (BC). Epithelial-mesenchymal transition (EMT) is a critical pathophysiological process in BC progression. The underlying molecular mechanisms of mitogen-activated protein kinase (MAPK) pathway, especially extracellular regulated protein kinases 5 (ERK5), in regulating benzidine-induced EMT remains unclarified. Hence, two human bladder cell lines, T24 and EJ, were utilized in our study. Briefly, cell migration was assessed by wound healing assay, and cell invasion was determined by Transwell assay. Quantitative PCR and western blot were utilized to determine both gene expressions as well as protein levels of EMT and MAPK, respectively. Small interfering RNA (siRNA) was transfected to further determine ERK5 function. As a result, the migration and invasion abilities were enhanced, epithelial marker expression was decreased while mesenchymal marker expression was increased in human BC cell lines. Meanwhile, benzidine administration led to activation of ERK5 and activator protein 1 (AP-1) proteins, without effective stimulation of the Jun N-terminal kinase (JNK) or p38 pathways. Moreover, Benzidine-induced EMT and ERK5 activation were completely suppressed by XMD8-92 and siRNAs specific to ERK5. Of note, ERK1/2 was activated in benzidine-treated T24 cells, while benzidine-induced EMT could not be reversed by U0126, an ERK1/2 inhibitor, as indicated by further study. Collectively, our findings revealed that ERK5-mediated EMT was critically involved in benzidine-correlated BC progression, indicating the therapeutic significance of ERK5 in benzidine-related BC.

Improving Combination Cancer Therapy by Acetaminophen and Romidepsin in Non-small Cell Lung Cancer Cells

  • Lee, Seong-Min;Park, James S.;Kim, Keun-Sik
    • Biomedical Science Letters
    • /
    • v.25 no.4
    • /
    • pp.293-301
    • /
    • 2019
  • Combination chemotherapy is more effective than mono-chemotherapy and is widely used in clinical practice for enhanced cancer treatment. In this study, we investigated the potential synergistic effects of acetaminophen, a common component in many cold medicines, and romidepsin, a histone deacetylase (HDAC) inhibitor, in the A549 non-small cell lung cancer (NSCLC) cell line. The combination of acetaminophen and romidepsin also exerted significant cytotoxicity and apoptosis induced by activation of caspase-3 on tumor cells in vitro. Moreover, combination therapy significantly induced increased production of chemokines that stimulate migration of activated T-cells into tumor cells. This mechanism can lead to active T-cell mediated anti-tumor immunity in addition to the direct cytotoxic chemotherapeutic effect. Activated T-cells led to enhanced cytotoxicity in drug-treated A549 cells through interaction with tumor cells. These results suggested that the interaction between the two drugs is synergistic and significant. In conclusion, our data showed that the use of romidepsin and low concentrations acetaminophen could induce effective anti-tumor effects via enhanced tumor immune and direct cytotoxic chemotherapeutic responses. The combination of acetaminophen with romidepsin should be considered as a promising strategy for the treatment of lung cancer.

Involvement of Macrophages in Proliferation of Prostate Cancer Cells Infected with Trichomonas vaginalis

  • Kim, Kyu-Shik;Moon, Hong-Sang;Kim, Sang-Su;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.6
    • /
    • pp.557-564
    • /
    • 2021
  • Macrophages play a key role in chronic inflammation, and are the most abundant immune cells in the tumor microenvironment. We investigated whether an interaction between inflamed prostate cancer cells stimulated with Trichomonas vaginalis and macrophages stimulates the proliferation of the cancer cells. Conditioned medium was prepared from T. vaginalis-infected (TCM) and uninfected (CM) mouse prostate cancer (PCa) cell line (TRAMP-C2 cells). Thereafter conditioned medium was prepared from macrophages (J774A.1 cell line) after incubation with CM (MCM) or TCM (MTCM). When TRAMP-C2 cells were stimulated with T. vaginalis, protein and mRNA levels of CXCL1 and CCL2 increased, and migration of macrophages toward TCM was more extensive than towards CM. Macrophages stimulated with TCM produced higher levels of CCL2, IL-6, TNF-α, their mRNAs than macrophages stimulated with CM. MTCM stimulated the proliferation and invasiveness of TRAMP-C2 cells as well as the expression of cytokine receptors (CCR2, GP130, CXCR2). Importantly, blocking of each cytokine receptors with anti-cytokine receptor antibody significantly reduced the proliferation and invasiveness of TRAMP-C2 cells. We conclude that inflammatory mediators released by TRAMP-C2 cells in response to infection by T. vaginalis stimulate the migration and activation of macrophages and the activated macrophages stimulate the proliferation and invasiveness of the TRAMP-C2 cells via cytokine-cytokine receptor binding. Our results therefore suggested that macrophages contribute to the exacerbation of PCa due to inflammation of prostate cancer cells reacted with T. vaginalis.

Inflammatory response to Trichomonas vaginalis in the pathogenesis of prostatitis and benign prostatic hyperplasia

  • Ik-Hwan Han;Jung-Hyun Kim;Jae-Sook Ryu
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.1
    • /
    • pp.2-14
    • /
    • 2023
  • Trichomonas vaginalis is a flagellated protozoan that causes trichomoniasis, a common nonviral sexually transmitted infection. T. vaginalis infection is asymptomatic in most infected men but can lead to chronic infection. The inflammatory response to chronic T. vaginalis infection may contribute to prostatic diseases, such as prostatitis and benign prostatic hyperplasia (BPH); however, studies on the relationship between T. vaginalis infection and prostate diseases are scarce. In this review, we discuss evidence from our studies on the involvement of T. vaginalis in the pathogenesis of prostate diseases, such as prostatitis and BPH. Studies of prostatitis have demonstrated that the attachment of T. vaginalis trophozoite to prostate epithelial cells (PECs) induces inflammatory cytokine production and inflammatory cell migration, leading to prostatitis. T. vaginalis also causes pathological changes, such as inflammatory cell infiltration, acinar changes, interstitial fibrosis, and mast cell infiltration, in prostate tissues of infected rats. Thus, T. vaginalis is considered an infectious agent that triggers prostatitis. Meanwhile, studies of prostatic hyperplasia revealed that mast cells activated by T. vaginalis-infected prostate cells secreted inflammatory mediators, such as β-hexosaminidase and tryptase, which promoted proliferation of prostate stromal cell (PSC). Moreover, interleukin-6 produced by proliferating PSCs induced the multiplication of BPH-1 epithelial cells as a result of stromal-epithelial interaction, suggesting that the proliferation of T. vaginalis-infected prostate cells can be induced through crosstalk with mast cells. These collective findings suggest that T. vaginalis contributes to the progression of prostatitis and prostatic hyperplasia by creating an inflammatory microenvironment involving PECs and PSCs.

miR-101 Inhibiting Cell Proliferation, Migration and Invasion in Hepatocellular Carcinoma through Downregulating Girdin

  • Cao, Ke;Li, Jingjing;Zhao, Yong;Wang, Qi;Zeng, Qinghai;He, Siqi;Yu, Li;Zhou, Jianda;Cao, Peiguo
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.96-102
    • /
    • 2016
  • miR-101 is considered to play an important role in hepatocellular carcinoma (HCC), but the underlying molecular mechanism remains to be elucidated. Here, we aimed to confirm whether Girdin is a target gene of miR-101 and determine the tumor suppressor of miR-101 through Girdin pathway. In our previous studies, we firstly found Girdin protein was overexpressed in HCC tissues, and it closely correlated to tumor size, T stage, TNM stage and Edmondson-Steiner stage of HCC patients. After specific small interfering RNA of Girdin was transfected into HepG2 and Huh7.5.1 cells, the proliferation and invasion ability of tumor cells were significantly inhibited. In this study, we further explored the detailed molecular mechanism of Girdin in HCC. Interestingly, we found that miR-101 significantly low-expressed in HCC tissues compared with that in matched normal tissues while Girdin had a relative higher expression, and miR-101 was inversely correlated with Girdin expression. In addition, after miR-101 transfection, the proliferation, migration and invasion abilities of HepG2 cells were weakened. Furthermore, we confirmed that Girdin is a direct target gene of miR-101. Finally we confirmed Talen-mediated Girdin knockout markedly suppressed cell proliferation, migration and invasion in HCC while downregulation of miR-101 significantly restored the inhibitory effect. Our findings suggested that miR-101/Girdin axis could be a potential application of HCC treatment.