• Title/Summary/Keyword: T cell immunity

Search Result 345, Processing Time 0.024 seconds

Induction of CD4+ Regulatory and Polarized Effector/helper T Cells by Dendritic Cells

  • Manfred B. Lutz
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.13-25
    • /
    • 2016
  • Dendritic cells (DCs) are considered to play major roles during the induction of T cell immune responses as well as the maintenance of T cell tolerance. Naive CD4+ T cells have been shown to respond with high plasticity to signals inducing their polarization into effector/helper or regulatory T cells. Data obtained from in vitro generated bone-marrow (BM)-derived DCs as well as genetic mouse models revealed an important but not exclusive role of DCs in shaping CD4+ T cell responses. Besides the specialization of some conventional DC subsets for the induction of polarized immunity, also the maturation stage, activation of specialized transcription factors and the cytokine production of DCs have major impact on CD4+ T cells. Since in vitro generated BM-DCs show a high diversity to shape CD4+ T cells and their high similarity to monocyte-derived DCs in vivo, this review reports data mainly on BM-DCs in this process and only touches the roles of transcription factors or of DC subsets, which have been discussed elsewhere. Here, recent findings on 1) the conversion of naive into anergic and further into Foxp3- regulatory T cells (Treg) by immature DCs, 2) the role of RelB in steady state migratory DCs (ssmDCs) for conversion of naive T cells into Foxp3+ Treg, 3) the DC maturation signature for polarized Th2 cell induction and 4) the DC source of IL-12 for Th1 induction are discussed.

Comparison of Overall Immunity Levels among Workers at Grape Orchard, Rose Greenhouse, and Open-Field Onion Farm

  • Maharjan, Anju;Gautam, Ravi;Jo, JiHun;Acharya, Manju;Lee, DaEun;Pramod, Bahadur KC;Gim, Jin;Sin, Sojung;Kim, Hyocher;Kim, ChangYul;Lee, SooYeon;Lee, SooJin;Heo, Yong;Kim, HyoungAh
    • Safety and Health at Work
    • /
    • v.13 no.2
    • /
    • pp.248-254
    • /
    • 2022
  • Background: Occupational hazards in crop farms vary diversely based on different field operations as soil management, harvesting processes, pesticide, or fertilizer application. We aimed at evaluating the immunological status of crop farmers, as limited systematic investigations on immune alteration involved with crop farming have been reported yet. Methods: Immunological parameters including plasma immunoglobulin level, major peripheral immune cells distribution, and level of cytokine production from activated T cell were conducted. Nineteen grape orchard, 48 onion open-field, and 21 rose greenhouse farmers were participated. Results: Significantly low proportion of natural killer (NK) cell, a core cell for innate immunity, was revealed in the grape farmers (19.8±3.3%) in comparison to the onion farmers (26.4±3.1%) and the rose farmers (26.9±2.5%), whereas cytotoxic T lymphocyte proportion was lower in the grape and the onion farmers than the rose farmers. The proportion of NKT cell, an immune cell implicated with allergic response, was significantly higher in the grape (2.3±0.3%) and the onion (1.6±0.8%) farmers compared with the rose farmers (1.0±0.4%). A significantly decreased interferon-gamma:interleukin-13 ratio was observed from ex vivo stimulated peripheral blood mononuclear cells of grape farmers compared with the other two groups. The grape farmers revealed the lowest levels of plasma IgG1 and IgG4, and their plasma IgE level was not significantly different from that of the onion or the rose farmers. Conclusion: Our finding suggests the high vulnerability of workplace-mediated allergic immunity in grape orchard farmers followed by open-field onion farmers and then the rose greenhouse farmers.

A Vibration Control of the Strcture using Immune Response Algorithm (면역반응 알고리즘을 이용한 구조물의 진동제어)

  • 이영진;이권순
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.389-398
    • /
    • 1999
  • In the biological immunity, the immune system of organisms regulates the antibody and T-cells to protect the attack from the foreign materials which are virus, germ cell, and other antigens, and supports their stable state. It has similar characteristics that has the adaptation and robustness to overcome disturbances and to control the plant of engineering application. In this paper, we build a model of the T-cell regulated immune response mechanism. We have also designed an immune response controller(IRC) focusing on the T-cell regulated immune response of the biological immune system that include both a help part to control the response and a suppress part to adjust system stabilization effect. We show some computer simulation to control the vibration of building structure system with strong wind forces excitation also demonstrate the efficiency of the proposed controller for applying a practical system even with existing nonlinear terms.

  • PDF

An Experimental Study on the Effect of Immunopotential and the Anticancer Effect of Red Ginseng Extract (한국 홍삼의 면역활성 및 항암효과에 관한 실험적 연구)

  • 장성강;김주헌
    • Journal of Ginseng Research
    • /
    • v.18 no.3
    • /
    • pp.151-159
    • /
    • 1994
  • To evaluate the anticarcinogenic effect and its mechanism of red ginseng, the mice were treated with red ginseng and received subcutaneous Bl6 melanoma cell line injection on the back. Tumor incidence was same (100%) both in water and red ginseng-treated groups, but tumor production was delayed in red ginseng-treated group. Survival time was somewhat longer in red ginseng-treated group. The histopathological findings were similar in both groups, but lymphocytic infiltration around the tumor and melanin production in the tumor cells were prominent in the red ginseng-treated group. Flow cytometric analysis on T lymphocytes and natural killer cells revealed increased $T_H$/$T_S$ ratio and increased NK cells in red ginseng-treated group. These results suggest that the anticarcinogenic effect of red ginseng may be exerted by the increased cell-mediated immunity and natural killer cell activity.

  • PDF

Effects of Vinblastine and Vincristine on the Primary and Secondary Cell-mediated Immunity (Vinblastine과 Vincristine이 1차(次) 및 2차(次) 세포성(細胞性) 면역반응(免疫反應)에 미치는 영향(影響))

  • Pyo, Myoung-Yun
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.3
    • /
    • pp.248-254
    • /
    • 1986
  • Effects of vinblastine(VLB) and vincristine(VCR) on cell-mediated immunity(CMI) were studied with the microcytotoxicity test(MCT) after normal or pre-sensitized Balb/c mice had been treated in vivo with a combination of two different doses of VLB or VCR(single dose of 20% and 60% $LD_{50}$, i.p.) at different times (from day -6 to day +4) plus allo-transplantation antigen(allo-TA, cells from C3H mice at day 0). The results were that $LD_{50}$ of VLB for female Balb/c mouse was 7.3mg/kg body weight (i.p.) and $LD_{50}$ of VCR was 4.3mg/kg body weight and that VLB and VCR acted as immunosuppressive agents on the primary CMI when administered after allo-TA(antigen-drug-phase), but showed no effect when administered prior to allo-TA(drug-antigen-phase). Change of doses of VLB and VCR(20% $LD_{50}$, 60% $LD_{50}$) caused quantitative or qualitative variations in the immunomodulating effects of these two drugs. Neither VLB nor VCR had any immunomodulating effect on the secondary CMI. Lastly, the results support that the four parameters (type of drug, sensitization status, time of drug treatment in relation to antigen injection, and drug dosis) are significant for the effects of the VLB and VCR on the CMI, and that VLB and VCR may inhibit the proliferation of antigen-stimulated T effector lymphocytes but not memory-cytotoxic T lymphocytes.

  • PDF

Integration of the Innate and Adaptive Immunity by CD137-CD137L Bidirectional Signals: Implications in Allograft Rejection

  • Park, Sang June;Lee, Jong Soo;Kwon, Byungsuk;Cho, Hong Rae
    • Korean Journal of Transplantation
    • /
    • v.28 no.3
    • /
    • pp.113-120
    • /
    • 2014
  • Two-signal models are useful in explaining various types of immune responses. In particular, secondary, so-called costimulatory, signals are critically required for the process of T-cell activation, survival, differentiation, and memory formation. Early studies in rodent models showed that targeting T-cell costimulatory pathways elicits immunological tolerance, providing a basis for development of costimulatory therapeutics in allograft rejection. However, as the classic definition of T-cell costimulation continues to evolve, simple blockade of costimulatory pathways has limitations in prevention of allograft rejection. Furthermore, functions of costimulatory molecules are much more diverse than initially anticipated and beyond T cells. In this mini-review, we will discuss CD137-CD137L bidirectional signals as examples showing that two-signals can be applicable to multiple phases of immune responses.

Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages

  • Meyer J. Friedman;Haram Lee;June-Yong Lee;Soohwan Oh
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.5.1-5.28
    • /
    • 2023
  • Th cell lineage determination and functional specialization are tightly linked to the activation of lineage-determining transcription factors (TFs) that bind cis-regulatory elements. These lineage-determining TFs act in concert with multiple layers of transcriptional regulators to alter the epigenetic landscape, including DNA methylation, histone modification and threedimensional chromosome architecture, in order to facilitate the specific Th gene expression programs that allow for phenotypic diversification. Accumulating evidence indicates that Th cell differentiation is not as rigid as classically held; rather, extensive phenotypic plasticity is an inherent feature of T cell lineages. Recent studies have begun to uncover the epigenetic programs that mechanistically govern T cell subset specification and immunological memory. Advances in next generation sequencing technologies have allowed global transcriptomic and epigenomic interrogation of CD4+ Th cells that extends previous findings focusing on individual loci. In this review, we provide an overview of recent genome-wide insights into the transcriptional and epigenetic regulation of CD4+ T cell-mediated adaptive immunity and discuss the implications for disease as well as immunotherapies.

IL-17-Producing Cells in Tumor Immunity: Friends or Foes?

  • Da-Sol Kuen;Byung-Seok Kim;Yeonseok Chung
    • IMMUNE NETWORK
    • /
    • v.20 no.1
    • /
    • pp.6.1-6.20
    • /
    • 2020
  • IL-17 is produced by RAR-related orphan receptor gamma t (RORγt)-expressing cells including Th17 cells, subsets of γδT cells and innate lymphoid cells (ILCs). The biological significance of IL-17-producing cells is well-studied in contexts of inflammation, autoimmunity and host defense against infection. While most of available studies in tumor immunity mainly focused on the role of T-bet-expressing cells, including cytotoxic CD8+ T cells and NK cells, and their exhaustion status, the role of IL-17-producing cells remains poorly understood. While IL-17-producing T-cells were shown to be anti-tumorigenic in adoptive T-cell therapy settings, mice deficient in type 17 genes suggest a protumorigenic potential of IL-17-producing cells. This review discusses the features of IL-17-producing cells, of both lymphocytic and myeloid origins, as well as their suggested pro- and/or anti-tumorigenic functions in an organ-dependent context. Potential therapeutic approaches targeting these cells in the tumor microenvironment will also be discussed.

Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation

  • Kim, Chang H.;Park, Jeongho;Kim, Myunghoo
    • IMMUNE NETWORK
    • /
    • v.14 no.6
    • /
    • pp.277-288
    • /
    • 2014
  • T cells are central players in the regulation of adaptive immunity and immune tolerance. In the periphery, T cell differentiation for maturation and effector function is regulated by a number of factors. Various factors such as antigens, co-stimulation signals, and cytokines regulate T cell differentiation into functionally specialized effector and regulatory T cells. Other factors such as nutrients, micronutrients, nuclear hormones and microbial products provide important environmental cues for T cell differentiation. A mounting body of evidence indicates that the microbial metabolites short-chain fatty acids (SCFAs) have profound effects on T cells and directly and indirectly regulate their differentiation. We review the current status of our understanding of SCFA functions in regulation of peripheral T cell activity and discuss their impact on tissue inflammation.

육계에서 멜라토닌의 주기적인 변화와 면역성 및 생산성에 미치는 영향에 대한 고찰

  • 류명선;김상호;류경선
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2000.11a
    • /
    • pp.81-84
    • /
    • 2000
  • Effects of different photoperiod regimens on the cellular and humoral immunity in broiler chickens were studied(Exp 1). Total one hundred ninety two one-day-old commercial broiler chicks(Cobb$\times$Cobb) were raised between constant lighting(CL) and intermittent lighting (1h light: 3h darkness(IL; 1l; 3D) Body weight, feed intake and feed conversion were measured for seven week. Peripheral blood and splenic lymphocyte activities were tested at 3 and 5 wk of age by performing a mitogen cellproliferation assay with a polyclonal T-cell mitogen, concanavalin A (Con A), and B-cell mitogen, lipopolysaccharide (LPS). To investigate the effect of photoperiod on the humoral immunity, chicks were immunized with sheep red blood cell(SRBC) and iinactivated Newcastle disease virus(NDV) vaccine. Total immunoglobulin G(IgG) concentration was also determined. Diurnal change of melatonin was tested in sera. In experiment 2, 0.1ml melatonin were subcutaneously injected from three to five weeks old if immunomodulation effect of lighting regimen was due to the melatonin or not. Injections of melatonin were made at 0700h and the dosage was 10ng (M2), 100ng(M3), 1$\mu\textrm{g}$(M4) per bird daily, respectively. control were quivalent injections of vehicle(M1). Lymphocyte activities were tested and humoral immunities were examined at 5 weeks of age. Blood melatonin concentration was determined at 0h, 1, h, 2h, and 3h posterior to injection at five weeks old. It was higher in CL chicks than IL chickens during the subsequent period of 3 to 5 wk of age. However, weight gain of chicks raised IL were significantly higher at 6 wk of age than CL(P<0.05). Antibody response to NDV was not affected by both photoperiod regimens and melatonin injection, whereas anti-SRMB titer and IgG concentration were enhanced. Lymphocyte activity of chickens raised under IL was sighificantly higher than those of chickens raised under CL. Melatonin injection also increased lymphocyte activity. When peripheral blood lymphocytes were used, proliferation response to LPS and Con A were significantly increased in M2 and respectively. The results of this experiments suggest that IL improved host immune response and melatonin have immunomodulatory roles.

  • PDF