• Title/Summary/Keyword: T cell epitope

Search Result 45, Processing Time 0.027 seconds

Role of Citrullinated Fibrinogen Peptides in the Activation of CD4 T Cells from Patients with Rheumatoid Arthritis

  • Shin, Kihyuk;Hong, SeokChan;Choi, Eun-Hye;Lim, Mi-Kyoung;Shim, Seung-Cheol;Ju, Ji-Hyeon;Lee, Seung-Hyo
    • IMMUNE NETWORK
    • /
    • v.13 no.4
    • /
    • pp.116-122
    • /
    • 2013
  • This study was conducted to determine whether CD4 T cell responses to citrullinated fibrinogen occur in patients with rheumatoid arthritis (RA), especially in HLA-DR4-positive subjects. Whole peripheral blood mononuclear cells (PBMCs) of RA patients and control subjects were stimulated with citrullinated fibrinogen peptides, and T-cell production of proliferation and proinflammatory cytokines, such as interferon-${\gamma}$(IFN-${\gamma}$) and interleukin-17A (IL-17A), were measured. In addition, CD4 T cells from RA patients were stimulated with the citrullinated fibrinogen peptide, $Fib-{\alpha}$ R84Cit, identified as a DRB1*0401-restricted T cell epitope in HLA-DR4 transgenic mice, and the degree of T cell activation was examined similarly. No proliferative responses to the citrullinated fibrinogen peptides were observed in whole PBMCs or CD4 T cells from RA patients. Furthermore, no increased production of IFN-${\gamma}$ or IL-17A was found in whole PBMCs or CD4 T cells stimulated with the citrullinated fibrinogen peptides, although these cells responded to recall antigen, a mixture of tetanus toxoid, purified protein derivative (PPD) from Mycobacterium tuberculosis, and Candida albicans. The results of this study indicate that anti-citrulline immunity in RA patients may be mediated by fibrinogen because there is no evidence of CD4 T cell-mediated immune responses to citrullinated fibrinogen peptides.

Designing a novel mRNA vaccine against Vibrio harveyi infection in fish: an immunoinformatics approach

  • Islam, Sk Injamamul;Mou, Moslema Jahan;Sanjida, Saloa;Tariq, Muhammad;Nasir, Saad;Mahfuj, Sarower
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.11.1-11.20
    • /
    • 2022
  • Vibrio harveyi belongs to the Vibrio genus that causes vibriosis in marine and aquatic fish species through double-stranded DNA virus replication. In humans, around 12 Vibrio species can cause gastroenteritis (gastrointestinal illness). A large amount of virus particles can be found in the cytoplasm of infected cells, which may cause death. Despite these devastating complications, there is still no cure or vaccine for the virus. As a result, we used an immunoinformatics approach to develop a multi-epitope vaccine against most pathogenic hemolysin gene of V. harveyi. The immunodominant T- and B-cell epitopes were identified using the hemolysin protein. We developed a vaccine employing three possible epitopes: cytotoxic T-lymphocytes, helper T-lymphocytes, and linear B-lymphocyte epitopes, after thorough testing. The vaccine was developed to be antigenic, immunogenic, and non-allergenic, as well as having a better solubility. Molecular dynamics simulation revealed significant structural stiffness and binding stability. In addition, the immunological simulation generated by computer revealed that the vaccination might elicit immune reactions in the actual life after injection. Finally, using Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher codon adaptation index value, which was then included in the cloning vector pET2+ (a). Altogether, our experiment implies that the proposed peptide vaccine might be a good option for vibriosis prophylaxis.

Evaluation of Safety of Streptococcus pneumoniae DNA Vaccine in Immunopathological Aspect (폐렴구균 DNA 백신의 면역병리학적 측면에서의 안전성 평가)

  • Lee Jue-Hee;Han Yongmoon
    • YAKHAK HOEJI
    • /
    • v.50 no.1
    • /
    • pp.33-39
    • /
    • 2006
  • We have previously reported the minimum criteria that can be applied to evaluate efficacy and safety of a DNA vaccine with use of Streptococcus pneumoniae DNA vaccine (SPDNA). The SPDNA was formulated by inserting the DNA sequences that are codons specific for the carbohydrate epitope in the capsule of S. penumoniae by phage display peptide library. Administration of the SPDNA into mice induced both humoral and cell-mediated immunities. The induction was protective even in the absence of CD4+ T lymphocyte in mice. Profiles of cytokine and isotyping of antibody displayed tendency of the Th1. In continuation of these studies, we examined if the efficacy of the SPNDA was provoked by the peptide recognized by codons specific for the capsule. Results showed that the peptide vaccine formulae (SPP) induced protective antibody in mice as did the SPDNA. Involvement of the cell-mediated immunity was also determined. Possible side effects of autoimmune diseases such as myositis and C3a production and tumor-formation were undetectable in mice given 7 times of SPDNA vaccination during entire of 92 days. Even after the frequent immunization, immunogenicity of the SPDNA was observed as determined for antibody production, suggesting that there was no immunotolerance provoked. All together, these examining factors would be applied to measurement of a DNA vaccine safety regarding the immunopathological aspect.

$RpoB_{127-135}$ Peptide Derived from Mycobacterium tuberculosis is Processed and Presented to HLA-$A^*0201$ Restricted CD8+ T Cells via an Alternate HLA-I Processing Pathway

  • Cho, Jang-Eun;Cho, Sang-Nae;Cho, Sungae
    • Biomedical Science Letters
    • /
    • v.20 no.4
    • /
    • pp.250-255
    • /
    • 2014
  • Mycobacterium tuberculosis (MTB) resides and replicates inside macrophages. In our previous report, we reported that CD8+ T cell-mediated immune responses specific for the peptide derived from MTB RNA polymerase beta-subunit ($RpoB_{127-135}$) could be induced in TB patients expressing HLA-$A^*0201$ subtype. In order to examine whether $RpoB_{127-135}$ specific CD8+ T cells can recognize MTB infected macrophages in vitro, CD8+ T cell lines specific for $RpoB_{127-135}$ peptide were generated from peripheral blood mononuclear cells (PBMCs) of healthy HLA-$A^*0201$ subjects by in vitro immunization technique. In this study, we observed $RpoB_{127-135}$ specific CD8+ T cells could recognize and destroy macrophages infected with MTB for 2 to 4 days. $RpoB_{127-135}$ specific CD8+ T cell immune response was inducible from PBMC of healthy subjects expressing HLA-$A^*0206$ subtype, one of HLA-A2 supertype members. Next, we investigated the HLA-I processing mechanism of $RpoB_{127-135}$ peptide in MTB infected macrophages. As a result, the presentation of the MTB derived epitope peptide, $RpoB_{127-135}$, to CD8+ T cells was not inhibited by the treatment with brefeldin-A (ER-Golgi transport inhibitor) or lactacystin (proteasome inhibitor), which blocks the classical HLA-I processing pathway. However, $RpoB_{127-135}$ specific CD8+ T cell activity was blocked either by the blocking agent for the endocytosis (cytochalasin D) or by the blocking antibody (W6/32) for HLA-I molecules. Therefore, the $RpoB_{127-135}$ peptide may be processed by accessing the alternate HLA-I processing pathway. Understanding the processing and presentation mechanisms of the MTB derived proteins will help to improve the efficacy of vaccines and the efficiency of therapeutic agents for TB.

Expression of Enzymatically-active Phospholipase Cγ2 in E.coli

  • Ozdener, Fatih;Kunapuli, Satya P.;Daniel, James L.
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.508-512
    • /
    • 2002
  • Phospholipase C-gamma-2 ($PLC{\gamma}2$) activation is a key signaling event for many cell functions. In order to delineate the pathways that lead to $PLC{\gamma}2$ activation, we devised a quick method for obtaining sufficient $PLC{\gamma}2$. We obtained the full-length cDNA for human $PLC{\gamma}2$ and expressed it in E. coli using the expression vector pT5T. To enhance the protein expression, tandem AGG-AGG arginine codons at the amino acid positions 1204-1205 were replaced by CGG-CGG arginine codons. The protein expression was detected in a Western blot analysis by both anti-$PLC{\gamma}2$ antibodies and the antibodies that are raised against the tripeptide epitope (Glu-Glu-Phe) tag that are genetically-engineered to its carboxyl terminal. Crude lysates that were prepared from bacteria that express $PLC{\gamma}2$ were found to catalyze the hydrolysis of phosphatidylinositol 4,5 bisphosphate. Similar to previous reports on $PLC{\gamma}2$ that is isolated from mammalian tissue, the recombinant enzyme was $Ca^{2+}$ dependent with optimal activity at 1-10 uM $Ca^{2+}$.

DNA Vaccines Encoding Toxoplasma gondii Cathepsin C 1 Induce Protection against Toxoplasmosis in Mice

  • Han, Yali;Zhou, Aihua;Lu, Gang;Zhao, Guanghui;Sha, Wenchao;Wang, Lin;Guo, Jingjing;Zhou, Jian;Zhou, Huaiyu;Cong, Hua;He, Shenyi
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.5
    • /
    • pp.505-512
    • /
    • 2017
  • Toxoplasma gondii cathepsin C proteases (TgCPC1, 2, and 3) are important for the growth and survival of T. gondii. In the present study, B-cell and T-cell epitopes of TgCPC1 were predicted using DNAstar and the Immune Epitope Database. A TgCPC1 DNA vaccine was constructed, and its ability to induce protective immune responses against toxoplasmosis in BALB/c mice was evaluated in the presence or absence of the adjuvant ${\alpha}-GalCer$. As results, TgCPC1 DNA vaccine with or without adjuvant ${\alpha}-GalCer$ showed higher levels of IgG and IgG2a in the serum, as well as IL-2 and $IFN-{\gamma}$ in the spleen compared to controls (PBS, pEGFP-C1, and ${\alpha}-GalCer$). Upon challenge infection with tachyzoites of T. gondii (RH), $pCPC1/{\alpha}-GalCer$ immunized mice showed the longest survival among all the groups. Mice vaccinated with DNA vaccine without adjuvant (pCPC1) showed better protective immunity compared to other controls (PBS, pEGFP-C1, and ${\alpha}-GalCer$). These results indicate that a DNA vaccine encoding TgCPC1 is a potential vaccine candidate against toxoplasmosis.

Development of a Novel Subunit Vaccine Targeting Fusobacterium nucleatum FomA Porin Based on In Silico Analysis

  • Jeong, Kwangjoon;Sao, Puth;Park, Mi-Jin;Lee, Hansol;Kim, Shi Ho;Rhee, Joon Haeng;Lee, Shee Eun
    • International Journal of Oral Biology
    • /
    • v.42 no.2
    • /
    • pp.63-70
    • /
    • 2017
  • Selecting an appropriate antigen with optimal immunogenicity and physicochemical properties is a pivotal factor to develop a protein based subunit vaccine. Despite rapid progress in modern molecular cloning and recombinant protein technology, there remains a huge challenge for purifying and using protein antigens rich in hydrophobic domains, such as membrane associated proteins. To overcome current limitations using hydrophobic proteins as vaccine antigens, we adopted in silico analyses which included bioinformatic prediction and sequence-based protein 3D structure modeling, to develop a novel periodontitis subunit vaccine against the outer membrane protein FomA of Fusobacterium nucleatum. To generate an optimal antigen candidate, we predicted hydrophilicity and B cell epitope parameter by querying to web-based databases, and designed a truncated FomA (tFomA) candidate with better solubility and preserved B cell epitopes. The truncated recombinant protein was engineered to expose epitopes on the surface through simulating amino acid sequence-based 3D folding in aqueous environment. The recombinant tFomA was further expressed and purified, and its immunological properties were evaluated. In the mice intranasal vaccination study, tFomA significantly induced antigen-specific IgG and sIgA responses in both systemic and oral-mucosal compartments, respectively. Our results testify that intelligent in silico designing of antigens provide amenable vaccine epitopes from hard-to-manufacture hydrophobic domain rich microbial antigens.

Human $CD103^+$ dendritic cells promote the differentiation of Porphyromonas gingivalis heat shock protein peptide-specific regulatory T cells

  • Kim, Myung-Jin;Jeong, Eui-Kyong;Kwon, Eun-Young;Joo, Ji-Young;Lee, Ju-Youn;Choi, Jeomil
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.5
    • /
    • pp.235-241
    • /
    • 2014
  • Purpose: Regulatory T cells (Tregs), expressing CD4 and CD25 as well as Foxp3, are known to play a pivotal role in immunoregulatory function in autoimmune diseases, cancers, and graft rejection. Dendritic cells (DCs) are considered the major antigen-presenting cells (APCs) for initiating these T-cell immune responses, of which $CD103^+$ DCs are derived from precursor human peripheral blood mononuclear cells (PBMCs). The aim of the present study was to evaluate the capacity of these PBMC-derived $CD103^+$ DCs to promote the differentiation of antigen-specific Tregs. Methods: Monocyte-derived DCs were induced from $CD14^+$ monocytes from the PBMCs of 10 healthy subjects. Once the $CD103^+$ DCs were purified, the cell population was enriched by adding retinoic acid (RA). Peptide numbers 14 and 19 of Porphyromonas gingivalis heat shock protein 60 (HSP60) were synthesized to pulse $CD103^+$ DCs as a tool for presenting the peptide antigens to stimulate $CD3^+$ T cells that were isolated from human PBMC. Exogenous interleukin 2 was added as a coculture supplement. The antigen-specific T-cell lines established were phenotypically identified for their expression of CD4, CD25, or Foxp3. Results: When PBMCs were used as APCs, they demonstrated only a marginal capacity to stimulate peptide-specific Tregs, whereas $CD103^+$ DCs showed a potent antigen presenting capability to promote the peptide-specific Tregs, especially for peptide 14. RA enhanced the conversion of $CD103^+$ DCs, which paralleled the antigen-specific Treg-stimulating effect, though the differences failed to reach statistical significance. Conclusions: We demonstrated that $CD103^+$ DCs can promote antigen-specific Tregs from naive T cells, when used as APCs for an epitope peptide from P. gingivalis HSP60. RA was an effective reagent that induces mature DCs with the typical phenotypic expression of CD103 that demonstrated the functional capability to promote antigen-specific Tregs.

A Novel Polyclonal Antiserum against Toxoplasma gondii Sodium Hydrogen Exchanger 1

  • Xiao, Bin;Kuang, Zhenzhan;Zhan, Yanli;Chen, Daxiang;Gao, Yang;Li, Ming;Luo, Shuhong;Hao, Wenbo
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • The sodium hydrogen exchanger 1 (NHE1), which functions in maintaining the ratio of $Na^+$ and $H^+$ ions, is widely distributed in cell plasma membranes. It plays a prominent role in pH balancing, cell proliferation, differentiation, adhesion, and migration. However, its exact subcellular location and biological functions in Toxoplasma gondii are largely unclear. In this study, we cloned the C-terminal sequence of T. gondii NHE1 (TgNHE1) incorporating the C-terminal peptide of NHE1 (C-NHE1) into the pGEX4T-1 expression plasmid. The peptide sequence was predicted to have good antigenicity based on the information obtained from an immune epitope database. After induction of heterologous gene expression with isopropyl-b-D-thiogalactoside, the recombinant C-NHE1 protein successfully expressed in a soluble form was purified by glutathione sepharose beads as an immunogen for production of a rabbit polyclonal antiserum. The specificity of this antiserum was confirmed by western blotting and immunofluorescence. The antiserum could reduce T. gondii invasion into host cells, indicated by the decreased TgNHE1 expression in T. gondii parasites that were pre-incubated with antiserum in the process of cell entry. Furthermore, the antiserum reduced the virulence of T. gondii parasites to host cells in vitro, possibly by blocking the release of $Ca^{2+}$. In this regard, this antiserum has potential to be a valuable tool for further studies of TgNHE1.

Recombinant DNA and Protein Vaccines for Foot-and-mouth Disease Induce Humoral and Cellular Immune Responses in Mice

  • Bae, Ji-Young;Moon, Sun-Hwa;Choi, Jung-Ah;Park, Jong-Sug;Hahn, Bum-Soo;Kim, Ki-Yong;Kim, Byung-Han;Song, Jae-Young;Kwon, Dae-Hyuck;Lee, Suk-Chan;Kim, Jong-Bum;Yang, Joo-Sung
    • IMMUNE NETWORK
    • /
    • v.9 no.6
    • /
    • pp.265-273
    • /
    • 2009
  • Foot-and-mouth disease virus (FMDV) is a small single-stranded RNA virus which belongs to the family Picornaviridae, genus Apthovirus. It is a principal cause of FMD which is highly contagious in livestock. In a wild type virus infection, infected animals usually elicit antibodies against structural and non-structural protein of FMDV. A structural protein, VP1, is involved in neutralization of virus particle, and has both B and T cell epitopes. A RNA-dependent RNA polymerase, 3D, is highly conserved among other serotypes and strongly immunogenic, therefore, we selected VP1 and 3D as vaccine targets. VP1 and 3D genes were codon-optimized to enhance protein expression level and cloned into mammalian expression vector. To produce recombinant protein, VP1 and 3D genes were also cloned into pET vector. The VP1 and 3D DNA or proteins were co-immunized into 5 weeks old BALB/C mice. Antigen-specific serum antibody (Ab) responses were detected by Ab ELISA. Cellular immune response against VP1 and 3D was confirmed by ELISpot assay. The results showed that all DNA- and protein-immunized groups induced cellular immune responses, suggesting that both DNA and recombinant protein vaccine administration efficiently induced Ag-specific humoral and cellular immune responses.