• Title/Summary/Keyword: T$_{}$ I/

Search Result 10,535, Processing Time 0.035 seconds

A Clinical Study on Diagnosis of the patients with Scoliosis by D.I.T.I. (D.I.T.I.를 이용한 척추측만증 진단의 임상적 고찰)

  • Bae, Eun-jung;Seo, Jung-chul;Lim, Sung-chyl;Han, Sang-won
    • Journal of Acupuncture Research
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 2004
  • Objective: The purpose of this study is to report that D.I.T.I. can be used for diagnosis of scoliosis. Methods: We measured the posterior trunk surface of the patients with shoulder pain or low back pain. They were ruled out as scoliosis by D.I.T.I. and compared with X-ray finding of T L-spine Ap views and calculated scoliosis angle. Results: In according to the spinoprocess curve in D.I.T.I. we could rule out as scoliosis. Thermal difference of left and right segmental areas of the patients was showed. Scoliosis angle of the patients ranged from $4^{\circ}$ to $11^{\circ}$ in X-ray finding. Conclusions: The results suggest that D.I.T.I. can explain physiologic and functional abnormalities than X-ray, in diagnosis of scoliosis. But further studies are required to for the diagnosis of scoliosis by analysing D.I.T.I..

  • PDF

OSCILLATION OF ONE ORDER NEUTRAL DIFFERENTIAL EQUATION WITH IMPULSES

  • Cheng, Jinfa;Chu, Yuming
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.197-205
    • /
    • 2011
  • Explicit sufficient conditions are established for the oscillation of the one order neutral differential equations with impulsive $(x(t)+{\sum\limits^n_{i=1}}c_ix(t-{\sigma}_i))'+px(t-{\tau})=0$, $t{\neq}t_{\kappa}$, ${\Delta}(x(t_{\kappa})+{\sum\limits^n_{i=1}}c_ix(t_{\kappa}-{\sigma}_i))+p_0x(t_{\kappa}-{\tau})=0$, $c_i{\geq}0$, $i=1,2,{\ldots}n$, $p{\tau}$>0, $p_0{\tau}$>0, ${\Delta}(x_{\kappa})=x(t^+_{\kappa})-x(t_{\kappa})$. Explicit sufficient and necessary condition are established when $c_i$ = 0, i = 1, 2, ${\ldots}$, n.

ON FINITENESS PROPERTIES ON ASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES AND EXT-MODULES

  • Chu, Lizhong;Wang, Xian
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.239-250
    • /
    • 2014
  • Let R be a commutative Noetherian (not necessarily local) ring, I an ideal of R and M a finitely generated R-module. In this paper, by computing the local cohomology modules and Ext-modules via the injective resolution of M, we proved that, if for an integer t > 0, dim$_RH_I^i(M){\leq}k$ for ${\forall}i$ < t, then $$\displaystyle\bigcup_{i=0}^{j}(Ass_RH_I^i(M))_{{\geq}k}=\displaystyle\bigcup_{i=0}^{j}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$$ for ${\forall}j{\leq}t$ and ${\forall}n$ >0. This shows that${\bigcup}_{n>0}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$ is a finite set for ${\forall}i{\leq}t$. Also, we prove that $\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1^{n_1},x_2^{n_2},{\ldots},x_i^{n_i})M)_{{\geq}k}=\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1,x_2,{\ldots},x_i)M)_{{\geq}k}$ if $x_1,x_2,{\ldots},x_r$ is M-sequences in dimension > k and $n_1,n_2,{\ldots},n_r$ are some positive integers. Here, for a subset T of Spec(R), set $T_{{\geq}i}=\{{p{\in}T{\mid}dimR/p{\geq}i}\}$.

Suggestions for the Development of Internet-based Cognitive-Behavioral Therapy with a Trauma Focus (트라우마 초점의 인터넷 기반 인지행동치료 개발을 위한 제언)

  • Choi, Yun-Kyeung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.261-274
    • /
    • 2020
  • Research on the development and effectiveness of internet-based cognitive-behavioral therapy with a trauma focus (iCBT-T) has been actively conducted in Western societies, but these studies have just begun in Korea. The purpose of this study was to suggest practical considerations to developing and managing the iCBT-T program. After reviewing previous studies on iCBT-T, this author suggested a model of convergence and collaboration between mental health knowledge and information and communication technologies (ICT) to develop the iCBT-T program. This article outlines practical considerations, including focus and target groups of iCBT-T, intervention types of iCBT-T (open access vs. guided), number of sessions, ethical issues, professional support, and degree of user involvement. Methods to complement the limitations of internet as a medium are also proposed in the iCBT-T program. The convergence model of CBT-T and ICT is expected to promote the development of programs that can contribute to improving the mental health of users who experience traumatic events.

ON THE CAUCHY PROBLEM FOR SOME ABSTRACT NONLINEAR DIFFERENTIAL EQUATIONS

  • Hamza A.S. Abujabal;Mahmoud M. El-Boral
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.2
    • /
    • pp.279-290
    • /
    • 1996
  • In the present paper we study the Cauchy problem in a Banach space E for an abstract nonlinear differential equation of form $$\frac{d^2u}{dt^2}=-A{\frac{du}{dt}}+B(t)u+f(t, W)$$ where W=($A_1$(t)u, A_2(t)u)..., A_{\nu}(t)u), A_{i}(t),\;i=1,2,...{\nu}$,(B(t), t{\in}I$=[0, b]) are families of closed operators defined on dense sets in E into E, f is a given abstract nonlinear function on $I{\times}E^{\nu}$ into E and -A is a closed linar operator defined on dense set in e into E which generates a semi-group. Further the existence and uniqueness of the solution of the considered Cauchy problem is studied for a wide class of the families ($A_{i}$(t), i =1.2...${\nu}$), (B(t), $t{\in}I$) An application and some properties are also given for the theory of partial diferential equations.

REGULARITY OF TRANSFORMATION SEMIGROUPS DEFINED BY A PARTITION

  • Purisang, Pattama;Rakbud, Jittisak
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.217-227
    • /
    • 2016
  • Let X be a nonempty set, and let $\mathfrak{F}=\{Y_i:i{\in}I\}$ be a family of nonempty subsets of X with the properties that $X={\bigcup}_{i{\in}I}Y_i$, and $Y_i{\cap}Y_j={\emptyset}$ for all $i,j{\in}I$ with $i{\neq}j$. Let ${\emptyset}{\neq}J{\subseteq}I$, and let $T^{(J)}_{\mathfrak{F}}(X)=\{{\alpha}{\in}T(X):{\forall}i{\in}I{\exists}_j{\in}J,Y_i{\alpha}{\subseteq}Y_j\}$. Then $T^{(J)}_{\mathfrak{F}}(X)$ is a subsemigroup of the semigroup $T(X,Y^{(J)})$ of functions on X having ranges contained in $Y^{(J)}$, where $Y^{(J)}:={\bigcup}_{i{\in}J}Y_i$. For each ${\alpha}{\in}T^{(J)}_{\mathfrak{F}}(X)$, let ${\chi}^{({\alpha})}:I{\rightarrow}J$ be defined by $i{\chi}^{({\alpha})}=j{\Leftrightarrow}Y_i{\alpha}{\subseteq}Y_j$. Next, we define two congruence relations ${\chi}$ and $\widetilde{\chi}$ on $T^{(J)}_{\mathfrak{F}}(X)$ as follows: $({\alpha},{\beta}){\in}{\chi}{\Leftrightarrow}{\chi}^{({\alpha})}={\chi}^{({\beta})}$ and $({\alpha},{\beta}){\in}\widetilde{\chi}{\Leftrightarrow}{\chi}^{({\alpha})}{\mid}_J={\chi}^{({\alpha})}{\mid}_J$. We begin this paper by studying the regularity of the quotient semigroups $T^{(J)}_{\mathfrak{F}}(X)/{\chi}$ and $T^{(J)}_{\mathfrak{F}}(X)/{\widetilde{\chi}}$, and the semigroup $T^{(J)}_{\mathfrak{F}}(X)$. For each ${\alpha}{\in}T_{\mathfrak{F}}(X):=T^{(I)}_{\mathfrak{F}}(X)$, we see that the equivalence class [${\alpha}$] of ${\alpha}$ under ${\chi}$ is a subsemigroup of $T_{\mathfrak{F}}(X)$ if and only if ${\chi}^{({\alpha})}$ is an idempotent element in the full transformation semigroup T(I). Let $I_{\mathfrak{F}}(X)$, $S_{\mathfrak{F}}(X)$ and $B_{\mathfrak{F}}(X)$ be the sets of functions in $T_{\mathfrak{F}}(X)$ such that ${\chi}^{({\alpha})}$ is injective, surjective and bijective respectively. We end this paper by investigating the regularity of the subsemigroups [${\alpha}$], $I_{\mathfrak{F}}(X)$, $S_{\mathfrak{F}}(X)$ and $B_{\mathfrak{F}}(X)$ of $T_{\mathfrak{F}}(X)$.

STRONG CONVERGENCE OF COMPOSITE IMPLICIT ITERATIVE PROCESS FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS

  • Gu, Feng
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E. Let ${\{T_i\}}^N_{i=1}$ be N nonexpansive self-mappings of K with $F\;=\;{\cap}^N_{i=1}F(T_i)\;{\neq}\;{\theta}$ (here $F(T_i)$ denotes the set of fixed points of $T_i$). Suppose that one of the mappings in ${\{T_i\}}^N_{i=1}$ is semi-compact. Let $\{{\alpha}_n\}\;{\subset}\;[{\delta},\;1-{\delta}]$ for some ${\delta}\;{\in}\;(0,\;1)$ and $\{{\beta}_n\}\;{\subset}\;[\tau,\;1]$ for some ${\tau}\;{\in}\;(0,\;1]$. For arbitrary $x_0\;{\in}\;K$, let the sequence {$x_n$} be defined iteratively by $\{{x_n\;=\;{\alpha}_nx_{n-1}\;+\;(1-{\alpha}_n)T_ny_n,\;\;\;\;\;\;\;\;\; \atop {y_n\;=\;{\beta}nx_{n-1}\;+\;(1-{\beta}_n)T_nx_n},\;{\forall}_n{\geq}1,}$, where $T_n\;=\;T_{n(modN)}$. Then {$x_n$} convergence strongly to a common fixed point of the mappings family ${\{T_i\}}^N_{i=1}$. The result presented in this paper generalized and improve the corresponding results of Chidume and Shahzad [C. E. Chidume, N. Shahzad, Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings, Nonlinear Anal. 62(2005), 1149-1156] even in the case of ${\beta}_n\;{\equiv}\;1$ or N=1 are also new.

  • PDF

STABILITY OF HAHN DIFFERENCE EQUATIONS IN BANACH ALGEBRAS

  • Abdelkhaliq, Marwa M.;Hamza, Alaa E.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1141-1158
    • /
    • 2018
  • Hahn difference operator $D_{q,{\omega}}$ which is defined by $$D_{q,{\omega}}g(t)=\{{\frac{g(gt+{\omega})-g(t)}{t(g-1)+{\omega}}},{\hfill{20}}\text{if }t{\neq}{\theta}:={\frac{\omega}{1-q}},\\g^{\prime}({\theta}),{\hfill{83}}\text{if }t={\theta}$$ received a lot of interest from many researchers due to its applications in constructing families of orthogonal polynomials and in some approximation problems. In this paper, we investigate sufficient conditions for stability of the abstract linear Hahn difference equations of the form $$D_{q,{\omega}}x(t)=A(t)x(t)+f(t),\;t{\in}I$$, and $$D^2{q,{\omega}}x(t)+A(t)D_{q,{\omega}}x(t)+R(t)x(t)=f(t),\;t{\in}I$$, where $A,R:I{\rightarrow}{\mathbb{X}}$, and $f:I{\rightarrow}{\mathbb{X}}$. Here ${\mathbb{X}}$ is a Banach algebra with a unit element e and I is an interval of ${\mathbb{R}}$ containing ${\theta}$.

GENERALIZED SOLUTION OF THE DEPENDENT IMPULSIVE CONTROL SYSTEM CORRESPONDING TO VECTOR-VALUED CONTROLS OF BOUNDED VARIATION

  • Shin, Chang-Eon;Ryu, Ji-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.229-247
    • /
    • 2000
  • This paper is concerned with the impulsive Cauchy problem where the control function u is a possibly discontinuous vector-valued function with finite total variation. We assume that the vector fields f, $g_i$(i=1,…, m) are dependent on the time variable. The impulsive Cauchy problem is of the form x(t)=f(t,x) +$\SUMg_i(t,x)u_i(t)$, $t\in$[0,T], x(0)=$\in\; R^n$, where the vector fields f, $g_i$ : $\mathbb{R}\; \times\; \mathbb{R}\; \longrightarrow\; \mathbb(R)^n$ are measurable in t and Lipschitz continuous in x, If $g_i's$ satisfy a condition that $\SUM{\mid}g_i(t_2,x){\mid}{\leq}{\phi}$ $\forallt_1\; <\; t-2,x\; {\epsilon}\;\mathbb{R}^n$ for some increasing function $\phi$, then the imput-output function can be continuously extended to measurable functions of bounded variation.

  • PDF

Oscillation and Nonoscillation of Nonlinear Neutral Delay Differential Equations with Several Positive and Negative Coefficients

  • Elabbasy, Elmetwally M.;Hassan, Taher S.;Saker, Samir H.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.1-20
    • /
    • 2007
  • In this paper, oscillation and nonoscillation criteria are established for nonlinear neutral delay differential equations with several positive and negative coefficients $$[x(t)-R(t)x(t-r)]^{\prime}+\sum_{i=1}^{m}Pi(t)H_i(x(t-{\tau}_i))-\sum_{j=1}^{n}Q_j(t)H_j(x(t-{\sigma}_j))=0$$. Our criteria improve and extend many results known in the literature. In addition we prove that under appropriate hypotheses, if every solution of the associated linear equation with constant coefficients, $$y^{\prime}(t)+\sum_{i=1}^{m}(p_i-\sum_{k{\in}J_i}qk)y(t-{\tau}_i)=0$$, oscillates, then every solution of the nonlinear equation also oscillates.

  • PDF