• 제목/요약/키워드: T$\Gamma$-semigroups

검색결과 4건 처리시간 0.019초

THE FILTERS OF THE ORDERED $\Gamma$-SEMIGROUPS

  • Kwon, Young-In
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제4권2호
    • /
    • pp.131-135
    • /
    • 1997
  • We give the relation between the semilattice congruence N and the set of prime ideals of the ordered $\Gamma$-semigroup M.

  • PDF

ON INTUITIONISTIC FUZZY PRIME ${\Gamma}$-IDEALS OF ${\Gamma}$-LA-SEMIGROUPS

  • Abdullah, Saleem;Aslam, Muhammad
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.603-612
    • /
    • 2012
  • In this paper, we introduce and study the intuitionistic fuzzy prime (semi-prime) ${\Gamma}$-ideals of ${\Gamma}$-LA-semigroups and some interesting properties are investigated. The main result of the paper is: if $A={\langle}{\mu}_A,{\gamma}_A{\rangle}$ is an IFS in ${\Gamma}$-LA-semigroup S, then $A={\langle}{\mu}_A,{\gamma}_A{\rangle}$ is an intuitionistic fuzzy prime (semi-prime) ${\Gamma}$-ideal of S if and only if for any $s,t{\in}[0,1]$, the sets $U({\mu}_A,s)=\{x{\in}S:{\mu}_A(x){\geq}s\}$ and $L({\gamma}_A,t)=\{x{\in}S:{\gamma}_A(x){\leq}t\}$ are prime (semi-prime) ${\Gamma}$-ideals of S.

Nonlinear semigroups on locally convex spaces

  • Hyeon, Son-Kuk
    • East Asian mathematical journal
    • /
    • 제6권1호
    • /
    • pp.111-121
    • /
    • 1990
  • Let E be a locally convex Hausdorff space and let $\Gamma$ be a calibration for E. In this note we proved that if E is sequentially complete and a multi-vaiued operaturA in E is $\Gamma$-accretive such that $D(A){\subset}Re$ (I+$\lambda$A) for all sufficiently small positive $\lambda$, then A generates a nonlinear $\Gamma$-contraction semiproup {T(t) ; t>0}. We also proved that if E is complete, $Gamma$ is a dually uniformly convex calibration, and an operator A is m-$\Gamma$-accretive, then the initial value problem $$\{{\frac{d}{dt}u(t)+Au(t)\;\ni\;0,\;t >0,\atop u(0)=x}\.$$ has a solution $u:[0,\infty){\rightarrow}E$ given by $u(t)=T(t)x={lim}\limit_{n\rightarrow\infty}(I+\frac{t}{n}A)^{-n}x$ each $x{\varepsilon}D(A)$.

  • PDF

A GENERAL VISCOSITY APPROXIMATION METHOD OF FIXED POINT SOLUTIONS OF VARIATIONAL INEQUALITIES FOR NONEXPANSIVE SEMIGROUPS IN HILBERT SPACES

  • Plubtieng, Somyot;Wangkeeree, Rattanaporn
    • 대한수학회보
    • /
    • 제45권4호
    • /
    • pp.717-728
    • /
    • 2008
  • Let H be a real Hilbert space and S = {T(s) : $0\;{\leq}\;s\;<\;{\infty}$} be a nonexpansive semigroup on H such that $F(S)\;{\neq}\;{\emptyset}$ For a contraction f with coefficient 0 < $\alpha$ < 1, a strongly positive bounded linear operator A with coefficient $\bar{\gamma}$ > 0. Let 0 < $\gamma$ < $\frac{\bar{\gamma}}{\alpha}$. It is proved that the sequences {$x_t$} and {$x_n$} generated by the iterative method $$x_t\;=\;t{\gamma}f(x_t)\;+\;(I\;-\;tA){\frac{1}{{\lambda}_t}}\;{\int_0}^{{\lambda}_t}\;T(s){x_t}ds,$$ and $$x_{n+1}\;=\;{\alpha}_n{\gamma}f(x_n)\;+\;(I\;-\;{\alpha}_nA)\frac{1}{t_n}\;{\int_0}^{t_n}\;T(s){x_n}ds,$$ where {t}, {${\alpha}_n$} $\subset$ (0, 1) and {${\lambda}_t$}, {$t_n$} are positive real divergent sequences, converges strongly to a common fixed point $\tilde{x}\;{\in}\;F(S)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)\tilde{x},\;x\;-\;\tilde{x}{\rangle}\;{\leq}\;0$ for $x\;{\in}\;F(S)$.