• Title/Summary/Keyword: Systems analyses

Search Result 2,363, Processing Time 0.03 seconds

비좌굴가새가 설치된 골조의 비탄성거동 (Inelastic Behavior of Steel Frames with Buckling Restrained Braced)

  • 김진구;박준희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.97-104
    • /
    • 2005
  • The seismic behavior of framed structure with Chevron-type bucking restrained braces were investigated and their behavior factors were evaluated following the procedure proposed in ATC-19 & ATC-34. Two types of structures, building frame systems and dual systems, with 4, 8, 12, and 16 stories were designed per the IBC 2000, the AISC LRFD and the AISC/SEAOC Recommended Provisions for BRBF. Nonlinear static pushover analyses were carried out to observe the plastic hinge formation and to identify the loads and the displacements at the yield and the ultimate states. Time history analyses were also carried out to compute the permanent displacement md the dissipated hysteretic energy. According to the analysis results, the response modification factors of model structures fumed out to be larger than what is proposed in the provision in low story structures, and a little smaller in medium-story structures. The dual systems, even though designed with smaller seismic load, showed superior static and dynamic performances.

  • PDF

Systems Analyses of Alternative Technologies for the Recovery of Seawater Uranium

  • Byers, Margaret Flicker;Schneider, Erich;Landsberger, Sheldon
    • 방사성폐기물학회지
    • /
    • 제16권3호
    • /
    • pp.369-376
    • /
    • 2018
  • The ability to recover the nearly limitless supply of uranium contained within the world's oceans would provide supply security to uranium based fuel cycles. Therefore, in addition to U.S. national laboratories conducting R&D on a system capable of harvesting seawater uranium, a number of collaborative university partners have developed alternative technologies to complement the national laboratory scheme. This works summarizes the systems analysis of such novel uranium recovery technologies along with their potential impacts on seawater uranium recovery. While implementation of some recent developments can reduce the cost of seawater uranium by up to 30%, other researchers have sought to address a weakness while maintaining cost competitiveness.

Using System Reliability to Evaluate and Maintain Structural Systems

  • Estes, Allen C.;Frangopol, Dan M.
    • Computational Structural Engineering : An International Journal
    • /
    • 제1권1호
    • /
    • pp.71-80
    • /
    • 2001
  • A reliability approach to evaluate structural performance has gained increased acceptability and usage over the past two decades. Most reliability analyses are based on the reliability of an individual component without examining the entire structural system. These analyses often result in either unnecessary repairs or unsafe structures. This study uses examples of series, parallel, and series-parallel models of structural systems to illustrate how the component reliabilities affect the reliability of the entire system. The component-system reliability interaction can be used to develop optimum lifetime inspection and repair strategies for structural systems. These examples demonstrate that such strategies must be based on the reliability of the entire structural system. They also demonstrate that the location of an individual component in the system has a profound effect on the acceptable reliability of that component. Furthermore, when a structure is deteriorating over time, the reliability importance of various components is a1so changing with time. For this reason, the most critical component in the early life of the structure may not tie the most critical later.

  • PDF

The Design of Integrated Flying Vehicle Model for Engagement Analyses of Missiles

  • Ha, Sue Hyung
    • 한국멀티미디어학회논문지
    • /
    • 제22권8호
    • /
    • pp.930-939
    • /
    • 2019
  • High-Level Architecture(HLA)/Run-Time Infrastructure(RTI) are standards for distributed simulation systems and offer a technology to interconnect them and form one single simulation system. In defense domain, M&S is the only way to prove effectiveness of weapon systems except for Live Fire Testing (LFT). This paper focuses on guided missile simulations in weapon systems for engagement analyses and proposes the integrated flying vehicle model that is based on HLA/RTI. There are a lot of missiles in real world; therefore, we should develop each missile models in M&S in order to apply battlefield scenarios. To deal with the difficulties, in this paper, firstly, I classify these missiles into three models: ballastic, cruise, and surface-to-air missile models, and then I design each missile model and integrates them into a single model. This paper also offers a case study with my integrated flying vehicle model. At the conclusion, this paper presents contributions of this paper.

장마전선 상에서 발생한 중규모 호우계 구조에 대한 연구 (Structure of Mesoscale Heavy Precipitation Systems Originated from the Changma Front)

  • 박창근;이태영
    • 대기
    • /
    • 제18권4호
    • /
    • pp.317-338
    • /
    • 2008
  • Analyses of observational data and numerical simulations were performed to understand the mechanism of MCSs (Mesoscale Convective Systems) occurred on 13-14 July 2004 over Jindo area of the Korean Peninsula. Observations indicated that synoptic environment was favorable for the occurrence of heavy rainfall. This heavy rainfall appeared to have been enhanced by convergence around the Changma front and synoptic scale lifting. From the analyses of storm environment using Haenam upper-air observation data, it was confirmed that strong convective instability was present around the Jindo area. Instability indices such as K-index, SSI-index showed favorable condition for strong convection. In addition, warm advection in the lower troposphere and cold advection in the middle troposphere were detected from wind profiler data. The size of storm, that produced heavy rainfall over Jindo area, was smaller than $50{\times}50km^2$ according to radar observation. The storm developed more than 10 km in height, but high reflectivity (rain rate 30 mm/hr) was limited under 6 km. It can be judged that convection cells, which form cloud clusters, occurred on the inflow area of the Changma front. In numerical simulation, high CAPE (Convective Available Potential Energy) was found in the southwest of the Korean Peninsula. However, heavy rainfall was restricted to the Jindo area with high CIN (Convective INhibition) and high CAPE. From the observations of vertical drop size distribution from MRR (Micro Rain Radar) and the analyses of numerically simulated hydrometeors such as graupel etc., it can be inferred that melted graupels enhanced collision and coalescence process of heavy precipitation systems.

Effects of the structural strength of fire protection insulation systems in offshore installations

  • Park, Dae Kyeom;Kim, Jeong Hwan;Park, Jun Seok;Ha, Yeon Chul;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.493-510
    • /
    • 2021
  • Mineral wool is an insulation material commonly used in passive fire protection (PFP) systems on offshore installations. Insulation materials have only been considered functional materials for thermal analysis in the conventional offshore PFP system design method. Hence, the structural performance of insulation has yet to be considered in the design of PFP systems. However, the structural elements of offshore PFP systems are often designed with excessive dimensions to satisfy structural requirements under external loads such as wind, fire and explosive pressure. To verify the structural contribution of insulation material, it was considered a structural material in this study. A series of material tensile tests was undertaken with two types of mineral wool at room temperature and at elevated temperatures for fire conditions. The mechanical properties were then verified with modified methods, and a database was constructed for application in a series of nonlinear structural and thermal finite-element analyses of an offshore bulkhead-type PFP system. Numerical analyses were performed with a conventional model without insulation and with a new suggested model with insulation. These analyses showed the structural contribution of the insulation in the structural behaviour of the PFP panel. The results suggest the need to consider the structural strength of the insulation material in PFP systems during the structural design step for offshore installations.

국가 연구 개발 프로젝트 실시간 자금 관리 시스템 개발에 관한 연구 (Developing a Real-time Cashflow Management System for National R&D Management)

  • 한승엽;이혜정;이정우
    • 한국IT서비스학회지
    • /
    • 제13권3호
    • /
    • pp.343-357
    • /
    • 2014
  • As science and technology infiltrates every aspects of modern society in terms of economic and social growth and development, funding for research and development (R&D) is growing rapidly. Republic of Korea is not an exception in this trend and the R&D funding in Korea has been grown about 10% every year, recently. However, as the scope and size of funding grows exponentially, need for monitoring and managing these R&D projects becoming more and more imminent. Though different types of project management systems were developed by a variety of agencies and departments and used in monitoring and managing, these systems were developed as standalone silo type systems. These systems are not connected to each other while the same researchers may involved in different projects across agencies and department. Also, these management systems are not linked to the banking systems in which real transactions of funding occurs, such as cost reimbursement and financial audit of each R&D accounts. Historically, a few fraud and malappropriation cases were found and indicted. However, as the number of these incidents grows along with the growth of R&D funding, a large scale integration/linking of project management systems and banking systems. Realizing the importance of systems integration among agencies as well as with the banking systems, situational requirements analyses were conducted concerning the current state of R&D management system. As a results, a Real-time Case Management System (RCMS) was proposed as a solution to current problems. In this paper, the collected systems requirements were documents with analyses of the situation, the architecture of the integrated systems with more user-friendly technological alternatives. This large scale linkage requires interface standardization as well as modularization of interfaces. Proposed systems architecture is introduced here with technical details of Jex Framework used,, followed by resulting technical and economic performance of the Realtime Cashflow Management System (RCMS).

Response modification and seismic design factors of RCS moment frames based on the FEMA P695 methodology

  • Mohammad H. Habashizadeh;Nima Talebian;Dane Miller;Martin Skitmore;Hassan Karampour
    • Steel and Composite Structures
    • /
    • 제49권1호
    • /
    • pp.47-64
    • /
    • 2023
  • Due to their efficient use of materials, hybrid reinforced concrete-steel (RCS) systems provide more practical and economic advantages than traditional steel and concrete moment frames. This study evaluated the seismic design factors and response modification factor 'R' of RCS composite moment frames composed of reinforced concrete (RC) columns and steel (S) beams. The current International Building Code (IBC) and ASCE/SEI 7-05 classify RCS systems as special moment frames and provide an R factor of 8 for these systems. In this study, seismic design parameters were initially quantified for this structural system using an R factor of 8 based on the global methodology provided in FEMA P695. For analyses, multi-story (3, 5, 10, and 15) and multi-span (3 and 5) archetypes were used to conduct nonlinear static pushover analysis and incremental dynamic analysis (IDA) under near-field and far-field ground motions. The analyses were performed using the OpenSees software. The procedure was reiterated with a larger R factor of 9. Results of the performance evaluation of the investigated archetypes demonstrated that an R factor of 9 achieved the safety margin against collapse outlined by FEMA P695 and can be used for the design of RCS systems.

PLM(Product Lifecycle Management)과 시스템엔지니어링과의 관계 고찰 (Consideration of Relations between PLM(Product Lifecycle Management) and Systems Engineering)

  • 박중용
    • 시스템엔지니어링워크숍
    • /
    • 통권4호
    • /
    • pp.175-178
    • /
    • 2004
  • This paper introduces the concept and market status of PLM, then analyses PLM with an SEview I focus on relations beween SE and PLM. I propose some research topics about integration of SE and PLM and I expect growth of PLM market be a good chance of SE territorial expansion and marketing.

  • PDF

Time-varying Network Model of Conveyor Systems

  • Kang, Maing-Kyu
    • 한국경영과학회지
    • /
    • 제7권2호
    • /
    • pp.5-29
    • /
    • 1982
  • This paper presents the network models for general dynamic conveyor systems which are characterized by transporting and storing materials between work stations over time. With an appropriate choice of time-slice the conveyor system can be represented exactly as a dynamic flow network which can be solved by an efficient pure network algorithm.

  • PDF