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ABSTRACT

A reliability approach to evaluate structural performance has gained increased acceptability and usage over the past two decades.
Most reliability analyses are based on the reliability of an individual component without examining the entire structural system.
These analyses often result in either unnecessary repairs or unsafe structures. This study uses examples of series, parallel, and
series-parallel models of structural systems to illustrate how the component reliabilities affect the reliability of the entire system.
The component-system reliability interaction can be used to develop optimum lifetime inspection and repair strategies for structural
systems. These examples demonstrate that such strategies must be based on the reliability of the entire structural system. They
also demonstrate that the location of an individual component in the system has a profound effect on the acceptable reliability
of that component. Furthermore, when a structure is deteriorating over time, the reliability importance of various components is
also changing with time. For this reason, the most critical component in the early life of the structure may not be the most critical later.
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1. Introduction

With aging national infrastructures that require billions
of dollars to maintain, structural reliability analysis meth-
ods have become more relevant, useful and acceptable.
These methods have become more efficient as computers
become faster and ubiquitous. Application of such meth-
ods has the potential to result in lower cost and greater
safety as the uncertainties in loads, strengths, and models
are better quantificd. Most reliability analyses quantify the
safety of a single structural component using a single limit
state equation. Most engineering structures are complex
redundant systems involving multiple limit states. System
reliability evaluation can be quite complex and usually
involves the contribution of component failure events to
the system failure, the post-failure behavior of compo-
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nents, and the statistical correlation between failure events
(Hendawi and Frangopol, 1994).

A series system, also called a weakest-link system, fails
when any individual member in the system fails. A chain
is only as strong as its weakest link - and that’s only true if
the failure events are perfectly correlated. If a series sys-
tem is treated as a series of z elements, the probability of
failure of the system P, is written as the probability of a
union of events

Py= (U {g,()<0}) 1)
a=1
Depending on the correlation between the failure modes,
the possible range of values for P, are (Cornell, 1967)
Z
max[Pfa)|<P;<1-[]1-PLa) 2)
a=1
The lower bound occurs when the failure modes are per-
fectly correlated (p = 1.0 ) and the upper bound when they
are statistically independent (p = 0.0). Ditlevsen (1979)
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developed tighter bounds using joint-event probabilities
which accounted for failure mode correlation. Results in
this paper are based on the average of the Ditlevsen’s
bounds for the probability of failure of a series system.

A parallel system, also called a redundant or fail-safe
system, requires every individual member in the system to
fail for the system to fail. A fail-safe system is at least as
strong as its strongest member - and again that requires
perfect correlation. The probability of failure of a parallel
system is the probability of an intersection of failure events

Pr= (" {g,(x)<0}) G)

a=1

The possible range of values are (Ang and Tang, 1984):

z

H(I—Pf(a))SPfS min[P(a)] 4

a=1

where the lower bound results from mutual independence
and the upper bound from perfect correlation. These
bounds are often too wide to provide a useful solution.
Since the component reliability results in this paper were
obtained by reducing all random variables to their equiva-
lent normal distributions, the parallel system results were
found by solving the n-dimensional joint standardized dis-
tribution integral (Thoft-Christensen and Murotsu, 1986).
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where {B}={B, B, B}, p,,s is the system correlation
matrix, and z is the number of members in the parallel sys-
tem.

Many general engineering systems can be modeled as a
combination of series and parallel systems. For example, a
series of y parallel systems where each parallel system a
has z, components would have a probability of failure
expressed as

y Za
Pr=P( M {8(x)<0}) (6)

a=1b=1

Any complex system can be sequentially broken down
into simpler equivalent subsystems. The reliabilities of a
series subsystem and parallel subsystem are solved indi-
vidually as described above using the reliabilities and
direction cosines at the points of failure of individual com-

9
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Fig. 1. Reduction of a series-parallel system to an equivalent sin-
gle component.

ponents. An example of how a series-parallel system is
reduced is shown in Fig. 1. The system shown contains six
components. Initially, the two parallel systems are reduced
to an equivalent component which forms part of a series
system. The series system is then reduced to a single
equivalent component. The correlation of the equivalent
components is computed using equivalent alpha vectors
which are a function of the equivalent direction cosines as
described in Estes (1997). These reductions and com-
putations were performed using RELSYS (Reliability of
Systems) (Estes and Frangopol, 1998), a computer pro-
gram developed at the University of Colorado. Any struc-
tural system that can be modeled as a combination of
series and parallel components can be analyzed.

2. Series System

Fig. 2 shows a seven bar determinate truss which is mod-
eled as a series system where the failure of a single bar will
result in the failure of the entire system. The cross-sec-
tional areas are defined for the bottom chords (4, ), the
diagonals (4, ), and the top chord (4,). The limit state
equations based on equilibrium are:

8(1) = 8(2) = R=05(0/A}) =0 ™
83 =54 =55 =56 =R-Lio/ay=0  (®
8 = R~(Q/A) = 0 ©

where R is the resistance of the bars and Q is the load on the
truss. The resistance R is a normally distributed random
variable with a mean value of 2.0 and a standard deviation
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Fig. 2. Seven bar statically determinate truss modeled as a series
system.
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Fig. 3. Deterioration of cross-sectional area over time.

of 0.2, denoted as N[2.0, 0.2]. The distribution parameters
for the normally distributed load Q are N[1.0, 0.1]. It is
assumed that the resistances of the bars are perfectly corre-
lated and that the bar capacities are the same in both tension
and compression. As time passes, bars are deteriorating.
The deterioration is an exponential loss of cross-section
over time expressed as (Estes, 1997):

) (10)

where A(?) is the area of the bar at any time 7 and A,,;, is the
initial area of the bar prior to deterioration. The deteriora-
tion function (10) is shown in Fig. 3 where only half the
original area remains after about 17 years. The useful life of
the truss is 70 years. The cost of a repair is the sum of a
variable cost (C,,, = 5.0) which is charged for each bar
repaired and a fixed cost (Cp, =5.0) which is charged
each time a repair is made. The cost model was deliberately
kept simple to observe the trends in the problem. The
model could easily be modified to include damage intensity
and time value of money (Frangopol et al., 1997).

The minimum allowable system reliability index is arbi-

A(t) =A,,,—2.000.051

init
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trarily chosen as f,,, =2.0. The choice of j,;, would
typically be a complex decision which requires a bal-
ancing of initial cost, lifetime maintenance cost, and fail-
ure cost as described in Frangopol and Moses (1994).
Inspections are conducted every two years and if the
results indicate that the reliability of the structure will fall
below B, , then remedial action in the form of a repair of
at least one component is needed to improve the reliability
of the system. In this approach, a component reliability
threshold B,;,,..,..c 15 chosen. When the reliability of the
system falls below 2.0 all components whose individual
reliabilities fall below B,,,..; are repaired. Again, for
simplicity, it is assumed that the repair work is perfect.
This implies that the decayed reliability level is restored to
the original level. This can be achieved by replacing dam-
aged components with new components. The value of
Binreshoia 18 varied until an optimum solution is obtained
based on minimum total cost.

Initially the cross-sectional areas of the bars were chosen
so that each component had the same reliability when the
truss was placed in service (A, = 1.0; A, = J/2; 4, = 2.0).
Because the bars have different sizes, the reliability of the
bars will differ over time as the same depth of deterioration
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Fig. 4. Repair plan for a seven bar statically determinate truss,
ﬁthreshold = 70’ COS[ = 80
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has a different effect on these bars. Fig. 4 shows the results
when B, .. .. =70 which causes every bar to be
replaced whenever the system reliability falls below f,,;,
and results in a total lifetime cost*of 80. Repairs were
required after 28 and 56 years of service.

Lowering B,;,.sn01a t© 4.0 as shown in Fig. 5 results in
repairs after 28 and 50 years of service. Only bars 1 and 2
are replaced during the first repair; bars 1 through 6 are
replaced on the second repair and bar 7 is never replaced.
The resulting cost is 50 which is the optimum solution.
When B,;,..n0a Was lowered to 2.6 (see Fig. 6) a special
repair at year 56 was required for bars 1 and 2. These bars
did not get repaired after the 50 year inspection which
resulted in additional repair cost. In this case, the resulting
lifetime cost is 55. If the reliability of any individual mem-
ber was allowed to fall below B,,,.1..4 = 2.0, the system
reliability fell below B, .,z = 2.0 value which illustrates
the fallacy of evaluating individual components in iso-
lation. Because of the series nature of the system, every
component could be well above the minimum prescribed
system reliability and the reliability of the system as a
whole would be unacceptable. A truss which started its
deterioration with all bars having equal initial areas was
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Fig. 5. Repair plan for a seven bar statically determinate truss,
ﬁlhreshald = 40; Cost = 50.
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Fig. 6. Repair plan for a seven bar statically determinate truss, ini-
tial equal importance of bars; f,,_,... = 2.6; Cost = 55.

Fig. 7. A three bar parallel system.

also examined in Estes (1997) and the results were similar.

3. Parallel System

The three bar system shown in Fig. 7 was analyzed. In
this case, all three bars must fail for the system to fail. The
same useful life of 70 years, the same deterioration model,
and the same minimum system reliability of B,,, =2.0
were imposed. The load P and bar resistances R are nor-
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Fig. 8. Repair plan for a ductile three bar parallel system with

unequal bar areas A, =0.5, A,=2.0, A;=3.5, load: N[1.5, 0.3],
resistance: N[0.5, 0.05], uncorrelated resistances.

mally distributed, N(1.5,0.3) and N(0.5,0.05), respectively.
All variables are uncorrelated. Fig. 8 shows the results for
a parallel system with different bar areas (A, = 0.5; A,=
2.0;A; = 3.5). Despite different cross sectional areas, the
individual bars all have identical component reliabilities
due to load redistribution which eliminated the usefulness
Of B, esno1a - The teliabilities of all bars will remain equal
regardless of which member gets repaired. For a ductile
system, the individual component reliabilities are all
allowed to fall below B =2.0 while the reliability of the
system remains above 8, =2.0. In fact, bar 1 with the
smallest area completely vanishes and the reliability of the
system 1is still acceptable.

The same system was analyzed for different material
behaviors as shown in Fig. 9. A post-elastic behavior factor
7n is introduced which reports post-elastic capacity and
ranges from 1=1.0 (ductile material) to 17=0.0 (brittle
material). As the material becomes more brittle (see Fig.
10) the individual component reliabilities must be higher
than 77=2.0 to maintain a minimum system reliability of
2.0.
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Fig. 9. Repair plan for a semi-ductile three bar parallel system
with equal bar areas A =2.0; load: N[1.5, 0.3], resistance: NJ[0.5,
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4. Series-Parallel System

The three bar indeterminate truss shown in Fig. 11 is
modeled as a series-parallel system where the failure of
any two bars will cause failure of the system. Let the event
“Bar 2I1” indicate failure of bar 2 given that bar 1 has
already failed, and “Bar 1” indicate failure of bar 1. The
useful life is 70 years and the allowable system reliability
level is B,,, =2.0. The resistances of the three bars are:

Ry, —NI[15,1.5), R,,,—N[15,15], R,,,,— N[10,1.0].
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The post-elastic behavior factor (see Fig. 10) is again taken
into account.

The load on the truss is P with parameters N[20, 4.0].
The limit state equations which describe the components
in the series-parallel model are:

(a) Prior to any bars failing (Bar 1, Bar 2, Bar 3)

f< L
Barl L
Al
Barl Barl Bar 2 Bar2 Bar 3 Bar3
L 4 [ p
Bar2]1 Bar3}1 Bar 1|2 Bar3]2 Bar1|3 Bar2|3

Fig. 11. Three bar indeterminate truss modeled as a series-parallel
system.
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Fig. 12. Repair plan for a ductile three bar indeterminate truss
with equal bar areas; B, = 4.0; Cost =45.

8(1) =R (2.04,A;+ 2(A A, +A3A,))
—2PA (cos 0+ 5in6) —2.0PA,cos =0 1)

8(2) = Ry(2.04,A,+.J2(A Ay + A3A)))
—2P((A;-A3)cos0+(A,+As3)sinf) =0 (12)

2(3) = R3(J2A1A;+A Ay +AsA,)
+P(A;5in6—A;c080—24,c0860) =0 (13)

(b) Given failure of bar 1 (Bar 211, Bar 3|1):
g(4) = R,A,—P(sinf+cos0) + /2nR,A, =0 (14)
2(5) = RyA;—P.2cos0+NR,A, =0 (15)
(c) Given failure of bar 2 (Bar 112, Bar 312):
g(6) = R1A|—J2/2P(sin6+ cos0) + R,A, =0 (16)
8(7) = RyA;—J2/2P(cos 6—sin6) + NRyA, =0 17
(d) Given failure of bar 3 (Bar 113, Bar 213):
g(8) = RjA|—P.J2c0s 0+ NR3A; =0 (18)
2(9) = R,A,—P(sin@+ cos8) + J2NR3A; =0 (19)

Using the same cost model described earlier, the opti-
mum repair strategy (B,,,..n01a = 4.0, Cost = 45) for a duc-
tile truss is shown in Fig. 12 where bars 1 and 3 are
replaced three times during the life of the structure and bar
2 is never replaced. Larger values of f,,,..,,.s caused bar
2 to be needlessly replaced. Attempting to lower B, 10
to the point where bar 3 does not get replaced resulted in a
repair plan where the minimum system safety could not be
maintained for the life of the structure.

In Fig. 12, the reliability of Bar 1 is permitted to fall
below the minimum reliability of the system B, =2.0
because of the redundant nature of the (ductile) system.
Even though bar 2 is never replaced, the reliability of bar 2
is increased as other bars are replaced and are thus able to
assume more of the load on the structure. Similarly as bar
2 deteriorates, the load distribution is altered. This
decreases the reliability of bar 1 but increases the reli-
ability of bar 3.

If the components of the truss shown in Fig. 11 are brit-
tle, the optimum solution is shown in Fig. 13 where
Binreshora = 4.0 and Cost = 90. With no post-elastic capac-
ity, no individual component reliability was allowed to fall
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Fig. 13. repair plan for a brittle three bar indeterminate truss with
equal bar areas; f3,,..,.., = 4.0; Cost = 90.

below the reliability of the system and more lifetime
repairs were required. A higher f,,,,.,,.; value resulted in
fewer lifetime repairs which reduced the fixed cost, but
having to replace component 2 caused an even greater
increase in the variable cost. Again, the redistribution of
load caused by the deterioration of component 2 increased
the reliability of component 3, reduced the reliability of
component 1, and decreased the reliability of the system.
As expected, maintaining the reliability of the brittle struc-
ture was much more expensive than maintaining the reli-
ability of the ductile structure.

Further investigations involved changing the direction of
the load, changing the resistance or initial area of the bars,
varying post-elastic properties, and varying the correlation
among resistances. Correlation between resistances is
interesting in a series-parallel system because increased re-
sistance correlation improves the reliability of a series sys-
tem but decreases the reliability of a parallel system. Whe-
ther resistance correlation hurt or benefited the system reli-
ability varied depending on the specific case being con-
sidered. The optimum solution, for example, for a truss with
semi-ductile components (17 = 0.5 ) occurred when the cor-
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Fig. 14. Photograph of Bridge E-AH-17.

relation between the resistances was p=0.5 (Estes,
1997).

5. Series-Parallel System: Highway
Bridge

Existing

The truss examples were deliberately simplistic to illus-
trate the relevant principles in an efficient manner. The
concept of using system reliability to optimize a lifetime
repair strategy was extended to an existing highway bridge
(Bridge E-17-AH) located in Colorado (Estes, 1997; Estes
and Frangopol, 1999). The principles used in the previous
simplistic examples did not change. Significant effort and
data were needed to identify costs, deterioration models,
repair options, and limit states of a real-world structure.
Bridge E-17-AH is a simply-supported, three-span, four-
lane steel girder structure as shown in Fig. 14. The deck is
reinforced concrete and the steel girders are standard
rolled shapes. The interior span supports are reinforced
concrete pier columns with a pier cap and the exterior
abutments are concrete piles cased in steel.

Sixteen component failure modes ranging from moment
failure of the slab and girders to crushing of the abutments
and shear failure of the pier cap were identified and ana-
lyzed. The limit state equations for these failure modes use
24 random variables which include material strength un-
certainty, dimension uncertainty, and model uncertainty.
Random variable parameters were obtained from the exist-
ing literature. The nine girders were classified as exterior
(two girders) interior (five girders), and interior-exterior
(two girders) The live load model used for the calibration
of the 1994 AASHTO LRFD Design Specification was
used to account for uncertainty associated with vehicle
traffic across the bridge.

The bridge was modeled as a series-parallel system
where the superstructure will not fail until three adjacent
girders fail (Estes and Frangopol, 1999). The model was
simplified by ignoring irrelevant failure modes, accounting
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Fig. 15. System and component reliabilities over time for Bridge E-17-AH.

for symmetry and assuming perfect correlation between
spans.

The reliability of the system decreases over time as the
live load increases and the structure deteriorates. The slab
and the pier cap are exposed to road salts where the chlo-
ride penetration causes corrosion of the reinforcement
after a critical concentration is reached (Thoft-Christensen
et al., 1997, Frangopol et al., 1997). The steel girders are
corroding (Albrecht and Naeemi, 1984) which reduces the
web area and plastic section modulus over time. The dete-
rioration introduces new random variables into the limit
state equations which include diffusion rates, chloride sur-
face concentration and corrosion parameters.

Fig. 15 shows the reliabilities of the nine relevant failure
modes in the series-parallel model of the bridge along with
the reliability of the bridge system over time. The reli-
ability of the girders with respect to moment are initially
much lower than those of the girders with respect to shear.
The corrosion of the thin web however causes the shear
capacity and thus the reliability with respect to shear to
diminish at a much faster rate. After 40 years, the reli-
ability of the girders with respect to shear falls below the
moment reliability. Because of the parallel nature of the

superstructure, the girder reliability with respect to shear is
able to fall below 8 =2.0 without violating 8,,;, = 2.0 for
the system reliability.

The slab, pier cap and footing moment are all in the
series portion of the system and must therefore always
reflect component reliabilities higher than that of the sys-
tem. The slab reliability is initially the highest of the
three and the reliability of the column footing dictates
the reliability of the system in the early life of the
bridge. The slab is deteriorating more quickly than
cither the pier cap or the footing. As a result, it is the
slab which causes the system reliability to fall below
B =2.0 at year 50 and illustrates why repairing the
slab is an effective repair option.

Fig. 15 illustrates that the reliability of a system
depends on the series-parallel model of the system and
its deterioration. The component with the lowest reli-
ability may not be the most important component and
does not necessarily control the reliability of the system.
The most important component early in the life of the
structure may not be the most important component dur-
ing the later periods. It is difficult to predict the reli-
ability of the system even if the reliabilities of all of the
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components are known and therefore a repair strategy
based solely on component reliabilities would be inef-
ficient and potentially unsafe.

In consult with the Colorado DOT experts and cost doc-
uments (CDOT 96), five repair options and their asso-
ciated costs were developed. Inspections are performed
every two years and corrective action must be taken if the
system reliability fails below f,,;,. This information
allows for an optimum lifetime repair strategy to be devel-
oped. The optimum lifetime repair strategies for this
bridge accounting for various service lives, different inter-
est rates, alternative series-parallel models, and revised
deterioration models is presented in detail in Estes and
Frangopol (1999).

6. Conclusions

The real potential and benefit of using reliability meth-
ods is not realized until a structure is analyzed as an entire
system. Given the uncertainties involved and the impor-
tance of failure mode correlation in the results, a similar
analysis cannot be done deterministically. The actual
safety of a structural system cannot be accurately assessed
until the interconnection and relationship between the
components are understood. Genuine cost savings can be
realized as unnecessary repairs are identified and resources
are allocated to where they are most needed.

While computer availability and power have made the
complex reliability computations easy to perform, the
accuracy of the reliability analysis is only as good as the
input data which is often not readily available. Deter-
mining the statistical parameters for material strengths,
model uncertainty factors, loads, deterioration models, and
human error requires considerable research and sometimes
still boils down to an educated guess. Exact reliability
solutions are often not possible in closed form. First and
second order approximations are often used. Advanced
Monte Carlo simulation methods are valid options, but
given the low probability of failure associated with most
structures, require caution, experience, and, in general,
substantial CPU-time to obtain valid results. Diverse prob-
ability distributions are reduced to equivalent normal dis-
tributions at a failure point and correlation estimates are
particularly difficult to obtain. The errors associated with
these approximations are often magnified at the system
level, especially when the limit state equations are highly
non-linear. Despite these difficulties, there are many com-
mon engineering situations where these techniques pro-
vide highly accurate and helpful solutions. These methods
demonstrate tremendous potential when applied to life-
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cycle cost maintenance and management of civil infra-
structure systems (Frangopol et al., 2000, 2001).

One area that is ripe for future research is obtaining val-
ues for By, ., and B, where B, , is the reliability that
a new structure is designed to achieve when it is initially
placed in service and B,,;, is the minimum reliability that a
structure may deteriorate to before some remedial action is
required. In this paper, the structures examined were
already designed and f3,,;,, was arbitrarily chosen as 2.0. In
reality, these two values are critical to defining what may
happen to a structure over its life, the amount of main-
tenance it will require, how much it will cost to build, and
what risk society is willing to accept. Such considerations

-are not trivial and a wise choice of these two values has the

potential of substantial cost savings over the life of the
structure. While tremendous work remains, system reli-
ability methods demonstrate tremendous advantage over
deterministic methods in understanding and analyzing the
importance of individual members to the lifetime per-
formance of the overall structural system.
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