• Title/Summary/Keyword: Systems Engineering Capability Model

Search Result 270, Processing Time 0.029 seconds

A Comparison of Dynamic Analysis for the Flexible Riser in Shallow Water (천해에서 유연라이저의 동적해석 결과 비교)

  • Jo, Chul-Hee;Kim, Do-Youb;Rho, Yu-Ho;Kim, In-Ho
    • Journal of Coastal Disaster Prevention
    • /
    • v.1 no.4
    • /
    • pp.149-155
    • /
    • 2014
  • Flexible risers have been used extensively in recent years for floating and early production systems. Such risers offer the advantage of having inherent heave compliance in their catenary thereby greatly reducing the complexity of the riser-to-rig and riser-to subsea interfaces. Another advantage with flexible risers is their greater reliability. Concerns about fatigue life, gas permeation and pigging of lines have been overcome by extensive experience with these risers in production applications. In this paper, flexible riser analysis results were compared through coupled and uncoupled dynamic analyses methods. A time domain coupled analysis capability has been developed to model the dynamic responses of an integrated floating system incorporating the interactions between vessel, moorings and risers in a marine environment. For this study, SPM (Single Point Mooring) system for an FSU in shallow water was considered. This optimization model was integrated with a time-domain global motion analysis to assess both stability and design constraints of the flexible riser system.

An Efficient Markov Chain Based Channel Model for 6G Enabled Massive Internet of Things

  • Yang, Wei;Jing, Xiaojun;Huang, Hai;Zhu, Chunsheng;Jiang, Qiaojie;Xie, Dongliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4203-4223
    • /
    • 2021
  • Accelerated by the Internet of Things (IoT), the need for further technical innovations and developments within wireless communications beyond the fifth generation (B5G) networks is up-and-coming in the past few years. High altitude platform station (HAPS) communication is expected to achieve such high levels that, with high data transfer rates and low latency, millions of devices and applications can work seamlessly. The HAPS has emerged as an indispensable component of next-generations of wireless networks, which will therefore play an important role in promoting massive IoT interconnectivity with 6G. The performance of communication and key technology mainly depend on the characteristic of channel, thus we propose an efficient Markov chain based channel model, then analyze the HAPS communication system's uplink capability and swing effect through experiments. According to the simulation results, the efficacy of the proposed scheme is proven to meet the requirements of ubiquitous connectivity in future IoT enabled by 6G.

Evolutionary Design Methodology of Fuzzy Set-based Polynomial Neural Networks with the Information Granule

  • Roh Seok-Beom;Ahn Tae-Chon;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.301-304
    • /
    • 2005
  • In this paper, we propose a new fuzzy set-based polynomial neuron (FSPN) involving the information granule, and new fuzzy-neural networks - Fuzzy Set based Polynomial Neural Networks (FSPNN). We have developed a design methodology (genetic optimization using Genetic Algorithms) to find the optimal structure for fuzzy-neural networks that expanded from Group Method of Data Handling (GMDH). It is the number of input variables, the order of the polynomial, the number of membership functions, and a collection of the specific subset of input variables that are the parameters of FSPNN fixed by aid of genetic optimization that has search capability to find the optimal solution on the solution space. We have been interested in the architecture of fuzzy rules that mimic the real world, namely sub-model (node) composing the fuzzy-neural networks. We adopt fuzzy set-based fuzzy rules as substitute for fuzzy relation-based fuzzy rules and apply the concept of Information Granulation to the proposed fuzzy set-based rules.

  • PDF

Performance of CSK Scheme for V2I Visible Light Communication

  • Kim, Hyeon-Cheol;Kim, Byung Wook;Jung, Sung-Yoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.595-601
    • /
    • 2015
  • These days, research related to Intelligent Transportation System (ITS) technology is being widely considered. ITS is inevitable for future transportation systems to reduce accidents, congestion, and offer a smooth flow of traffic. The use of Visible Light Communication (VLC) in ITS systems has been considered widely because of its EMC/EMI free and LED infrastructure reusable properties. Among the VLC schemes, this study analyzed the performance of the Color Shift Keying (CSK) scheme under a Vehicle-to-Infrastructure (V2I) downlink scenario to verify the capability of CSK as a communication tool for ITS. By modeling daylight noise using the modified Blackbody radiation model, this study examined the performance of V2I VLC under daytime conditions. The relationship between BER, the communication distance, and the amount of ambient-light noises under the pre-described V2I scenario were determined by simulations.

Analysis of Phase Noise Effects in Transceiver Diversity Systems (송수신 다이버시티 시스템에서의 위상잡음 영향 분석)

  • Lee Seung-Ryong;Lee Jong-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.643-646
    • /
    • 2006
  • The popularity of OFDM systems is being increased because of high speed data transmission capability and the spectral efficiency characteristics. However, since OFDM systems are very sensitive to the phase noise, The interference among subcarriers and the total system noise can be increased seriously due to the degree of phase noise effects which can cause the orthogonality problems. Therefore, these phase noise effects were analyzed using the phase noise model by varying its parameters. Especially in this paper, The degree of system performance degradation was investigated for the OFDM systems applying the relatively simple transmit and receiver diversity.

  • PDF

Evaluation of effectiveness of fault-tolerant techniques in a digital instrumentation and control system with a fault injection experiment

  • Kim, Man Cheol;Seo, Jeongil;Jung, Wondea;Choi, Jong Gyun;Kang, Hyun Gook;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.692-701
    • /
    • 2019
  • Recently, instrumentation and control (I&C) systems in nuclear power plants have undergone digitalization. Owing to the unique characteristics of digital I&C systems, the reliability analysis of digital systems has become an important element of probabilistic safety assessment (PSA). In a reliability analysis of digital systems, fault-tolerant techniques and their effectiveness must be considered. A fault injection experiment was performed on a safety-critical digital I&C system developed for nuclear power plants to evaluate the effectiveness of fault-tolerant techniques implemented in the target system. A software-implemented fault injection in which faults were injected into the memory area was used based on the assumption that all faults in the target system will be reflected in the faults in the memory. To reduce the number of required fault injection experiments, the memory assigned to the target software was analyzed. In addition, to observe the effect of the fault detection coverage of fault-tolerant techniques, a PSA model was developed. The analysis of the experimental result also can be used to identify weak points of fault-tolerant techniques for capability improvement of fault-tolerant techniques

A Delphi Approach to the Development of an Integrated Performance Measurement and Management Model for a Car Assembler

  • Shawyun, Teay
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.3
    • /
    • pp.214-227
    • /
    • 2008
  • Today's dynamic competitiveness requires an organization to improve its performance measurement and management. Quality Management Systems (QMS) abound, the main ones being: ISO series, Malcolm Baldridge National Quality Award (MBNQA), European Forum for Quality Management (EFQM), Six Sigma Business Scorecard and the Balanced Scorecard. Based on the literature, the IPMMM (Integrated Performance Measurement and Management Model) identified 7 key synthesized factors: leadership, strategy management and policy, customer and market, learning and growth, partnership and resources, internal processes and business results that are employed to investigate the key performance indicators of a car assembler using the Delphi methodology. In the 2 rounds of Delphi panels consisting of 20 senior management personnel, the $1^{st}$ round of 198 indicators in the IPMMM yielded 90 indicators. The $2^{nd}$ round yielded 43 performance indicators with 18 rated as critical based on the % assigned in the $1^{st}$ and $2^{nd}$ priority rating of "very important factor" and "key performance indicator" that must be ranked high on both of the priorities. The very critical indicators appeared to be: defect percentage and first time capability (tie in $1^{st}$ place) and revenue, goal setting, customer satisfaction index, on-time delivery, brand image, return on investment, Claim Occurrence Ratio, and debt being ranked from $3^{rd}$ to $10^{th}$. It can be surmised that an organization can identify and develop an appropriate set of performance indicators through the Delphi methodology and implement and manage them based on the Balanced Scorecard.

Empirical Analysis of a Fine-Tuned Deep Convolutional Model in Classifying and Detecting Malaria Parasites from Blood Smears

  • Montalbo, Francis Jesmar P.;Alon, Alvin S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.147-165
    • /
    • 2021
  • In this work, we empirically evaluated the efficiency of the recent EfficientNetB0 model to identify and diagnose malaria parasite infections in blood smears. The dataset used was collected and classified by relevant experts from the Lister Hill National Centre for Biomedical Communications (LHNCBC). We prepared our samples with minimal image transformations as opposed to others, as we focused more on the feature extraction capability of the EfficientNetB0 baseline model. We applied transfer learning to increase the initial feature sets and reduced the training time to train our model. We then fine-tuned it to work with our proposed layers and re-trained the entire model to learn from our prepared dataset. The highest overall accuracy attained from our evaluated results was 94.70% from fifty epochs and followed by 94.68% within just ten. Additional visualization and analysis using the Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm visualized how effectively our fine-tuned EfficientNetB0 detected infections better than other recent state-of-the-art DCNN models. This study, therefore, concludes that when fine-tuned, the recent EfficientNetB0 will generate highly accurate deep learning solutions for the identification of malaria parasites in blood smears without the need for stringent pre-processing, optimization, or data augmentation of images.

A study of human grasping ability and its application to a robot hand

  • Kim, Ilhwan;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1774-1778
    • /
    • 1991
  • In this paper, we discuss the smooth hand-over of an object from a man to a robot and vice versa. In order for a robot to grasp an object or release a grasped object stably without using object model, as a man does, one of the basic approaches is the physiological method motivated by the study of human hands. So, we analyze human's grasping behavior by measuring grasp and friction forces simultaneously as a man grasps a experimental device which is designed for grasping or hand-over. Also, we investigate two methods that can predict when and bow fingers will slip upon a grasped object. And then, we propose a method of the hand-over of an object between a man and a robot by applying human's capability to a robot hand control.

  • PDF

A Batch Scheduling Problem for Jobs with Interval-typed Processing Time (구간 공정 시간을 갖는 작업들의 일괄처리 일정계획문제)

  • 오세호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.1
    • /
    • pp.47-50
    • /
    • 2004
  • This paper deals with the problem of batching and scheduling of jobs whose processing times are different respectively But, they are given as not the exact value but the range from the lower limits to the upper, which makes it possible to group jobs into batches. The grouping of jobs is desirable because of the capability of the batch processor to accommodate several jobs at once. The time required to process the jobs in any batch depends on their lower limit processing times. Once processing is initiated on a batch processor, the batch cannot be interrupted, nor can other jobs be started. And all jobs are assumed to be simultaneously available. This paper develops the model to describe these situation and a heuristic method to minimize its total tardiness.