• Title/Summary/Keyword: Systematic modeling

Search Result 487, Processing Time 0.025 seconds

Analysis of Application Automatic Creation Case Tool Base on UML (UML에 기초한 어플리케이션 자동 생성 Case Tool의 분석)

  • 한현관;이명진
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.12
    • /
    • pp.1697-1712
    • /
    • 2002
  • Unified Modeling Language (UML) is a standard language for specifying, visualizing, constructing, and documenting the artifacts of software systems. It simplifies the complex process of software design, making a blueprint for construction. In this paper, we apply automated application generation tools such as Rational Rose and BizWiz to a realistic cyber shopping mall and then compare and analyze them in the view of UML. We also propose some methods for the systematic system analysis, design, and implementation by applying UML to a customer management system based on above results.

  • PDF

Fuzzy Modeling for Nonlinear Systems Using Virus-Evolutionary Genetic Algorithm (바이러스-진화 유전 알고리즘을 이용한 비선형 시스템의 퍼지모델링)

  • Lee, Seung-Jun;Joo, Young-Hoon;Chang, Wook;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.522-524
    • /
    • 1999
  • This paper addresses the systematic approach to the fuzzy modeling of the class of complex and uncertain nonlinear systems. While the conventional genetic algorithm (GA) only searches the global solution, Virus-Evolutionary Genetic Algorithm(VEGA) can search the global and local optimal solution simultaneously. In the proposed method the parameter and the structure of the fuzzy model are automatically identified at the same time by using VEGA. To show the effectiveness and the feasibility of the proposed method, a numerical example is provided. The performance of the proposed method is compared with that of conventional GA.

  • PDF

Bond graph modeling and multivariable control of maglev system with a combined lift and guidance (편심배치방식 자기부상 시스템의 본드선도 모델링 및 다변수 제어)

  • 박전수;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1091-1097
    • /
    • 1991
  • A logical and systematic procedure to derive a mathematical model for magnetically levitation(maglev) systems with a combined lift and guidance is developed by using and graph. First, bond graph is constructed for the energy-feeding system with magnetic leakage flux. And, the overall maglev system in which lift and guidance dynamics are coupled is modeled by using the concept of multi-port field in bond notations. Finally, the LQG/LTR control systems are designed for single-input single-output and for multi-input multi-output maglev systems. In this paper, it has been shown that the bond graph is an excellent method for modeling multi-energy domain systems such as maglev systems and the multivariable control system is required to improve the performance of the maglev system with a combined lift and guidance.

  • PDF

INSTRUMENTATION AND CONTROL STRATEGIES FOR AN INTEGRAL PRESSURIZED WATER REACTOR

  • UPADHYAYA, BELLE R.;LISH, MATTHEW R.;HINES, J. WESLEY;TARVER, RYAN A.
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.148-156
    • /
    • 2015
  • Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs) that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C) strategies for a large 1,000 MWe iPWR is described. Reactor system modeling-which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum-is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

Operational Optimization of Anodic/cathodic Utilization for a Residential Power Generation System to Improve System Power Efficiency (가정용 연료전지 시스템의 전기 효율 향상을 위한 연료/공기 이용률 운전 최적화)

  • Seok, Donghun;Kim, Minjin;Sohn, Young-Jun;Lee, Jinho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.373-385
    • /
    • 2013
  • To obtain higher power efficiency of Residential Power Generation system(RPG), it is needed to operate system on optimized stoichiometric ratios of fuel and air. Stoichiometric ratios of fuel/air are closely related to efficiency of stack, reformer and power consumption of Balance Of Plant(BOP). In this paper, optimizing stoichiometric ratios of fuel/air are conducted through systematic experiments and modeling. Based on fundamental principles and experimental data, constraints are chosen. By implementing these optimum values of stoichiometric ratios, power efficiency of the system could be maximized.

Intelligent Digital Controller Using Digital Redesign

  • Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.187-193
    • /
    • 2003
  • In this paper, a systematic design method of the intelligent PAM fuzzy controller for nonlinear systems using the efficient tools-Linear Matrix Inequality and the intelligent digital redesign is proposed. In order to digitally control the nonlinear systems, the TS fuzzy model is used for fuzzy modeling of the given nonlinear system. The convex representation technique also can be utilized for obtaining TS fuzzy models. First, the analog fuzzy-model-based controller is designed such that the closed-loop system is globally asymptotically stable in the sense of Lyapunov stability criterion. The simulation results strongly convince us that the proposed method has great potential in the application to the industry.

Development of BIM models and management of BIM data for waterworks maintenance (상수도시설물의 유지관리를 위한 BIM모델 개발 및 BIM 데이터 관리방안)

  • Park, Jaehyun;Lee, Hyundong;Kwak, Pilljae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.669-679
    • /
    • 2014
  • 3D-based BIM(Building Information Modeling) technologies can be utilized effectively as a means of systematic management of facility information for safety assurance and effective maintenance of waterworks facilities. In this study, BIM models of water treatment facilities that can be used as basic data for BIM-based maintenance of waterworks facilities were developed. Information exchange and generality of the developed BIM models were evaluated by conducting interoperability analysis of IFC(Industry Foundation Classes) conversion models. In addition, the application of COBie(Construction Operations Building information exchange) was recommended as an effective countermeasure to deal with technical limitation regarding exchange and utilization of facilities-related information through current IFC models. The results of this study can contribute to the development of BIM-based maintenance system for waterworks facilities.

A Study on the Induction Method of Transfer Function of Bond Graph using Mason's Rule (메이슨의 공식을 이용한 본드그래프의 전달함수 유도법에 관한 연구)

  • 한창수;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.66-75
    • /
    • 1998
  • In many case of optimal design and sensitivity analysis, obtaining of transfer function between input and output variables is a difficult and time-consuming problem. The bond graph modeling is a method that is used for making it easy to analyze complex systems composed of mechanical and electrical parts. It gives us a simple and systematic tool to get state-space equations easily. And we can obtain the transfer function graphically using bond graph and Mason's rule. This paper shows how bond graphs are converted to block diagram and how Mason's rule is applied. And the simple direct method to obtain transfer function from bond graph is introduced. As a example, induction of transfer function of electric power steering composed of mechanical and electrical parts will be done.

  • PDF

Attributed AND-OR Graph for Synthesis of Superscalar Processor Simulator (슈퍼스칼라 프로세서 시뮬레이터의 생성을 위한 Attributed AND-OR 그래프)

  • Jun Kyoung Kim;Tag Gon Kim
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.73-78
    • /
    • 2003
  • This paper proposes the simulator synthesis scheme which is based on the exploration of the total design space in attributed AND-OR graph. Attributed AND-OR graph is a systematic design space representation formalism which enables to represent all the design space by decomposition rule and specialization rule. In addition, attributes attached to the design entity provides flexible modeling. Based on this design space representation scheme, a pruning algorithm which can transform the total design space into sub-design space that satisfies the user requirements is given. We have shown the effectiveness of our framework by (ⅰ) constructing the design space of superscalar processor in attributed AND-OR graph (ⅱ) pruning it to obtain the ARM9 processor architecture. (ⅲ) modeling the components of the architecture and (ⅳ) simulating the ARM9 model.

  • PDF

Sensor placement strategy for high quality sensing in machine health monitoring

  • Gao, Robert X.;Wang, Changting;Sheng, Shuangwen
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.121-140
    • /
    • 2005
  • This paper presents a systematic investigation of the effect of sensor location on the data quality and subsequently, on the effectiveness of machine health monitoring. Based on an analysis of the signal propagation process from the defect location to the sensor, numerical simulations using finite element modeling were conducted on a bearing test bed to determine the signal strength at several representative sensor locations. The results showed that placing sensors closely to the machine component being monitored is critical to achieving high signal-to-noise ratio, thus improving the data quality. Using millimeter-sized piezoceramic plates, the obtained results were evaluated experimentally. A comparison with a set of commercial vibration sensors verified the developed structural dynamics-based sensor placement strategy. It further demonstrated that the proposed shock wave-based sensing technique provided an effective alternative to vibration measurement, while requiring less space for sensor installation.