• 제목/요약/키워드: System-on-Chip

검색결과 1,734건 처리시간 0.032초

Fracture Strength of All-Ceramic 3-Unit Fixed Partial Dentures Manufactured by CAD/CAM and Copy-Milling Systems (CAD/CAM 및 카피밀링 시스템을 이용하여 제작한 구치부 3-유닛 고정성 국소의치의 파절강도)

  • Kang, Hoo-Won;Kim, Hee-Jin;Kim, Jang-Ju;Ko, Myung-Won
    • Journal of Technologic Dentistry
    • /
    • 제34권2호
    • /
    • pp.95-103
    • /
    • 2012
  • Purpose: Fracture strength of all-ceramic 3-unit fixed partial dentures manufactured by CAD/CAM and copy-milling systems were evaluated. Methods: Zirconia cores were made by milling the pre-sintered zirconia block by CAD/CAM or copy milling method followed by subsequent sintering. By building-up the corresponding porcelains on the core, all-ceramic bridges were fabricated, and those were evaluated in comparison with PFM fixed partial denture. Results: During the flexural test of the 3-unit PFM bridge, the porcelain started to chip or break at 507.28(${\pm}62.82$)kgf and the metal framework did not break until the maximum load level of 800kgf which was set in the testing instrument of this study. However, among all-ceramic restoration test groups, Everest(EV) group showed a peeling off or breakage of the porcelain from 365.64(${\pm}64.96$)kgf and the core was broken at 491.77(${\pm}55.62$)kgf. Those values of Zirkonzahn(ZR) were 431.03(${\pm}58.47$)kgf and 602.74(${\pm}48.44$)kgf, respectively. The break strength of the porcelain of PFM(PM) group was significantly higher than that of EV (p<0.05) group and there was no significant difference when comparing to that of ZR (p>0.05). ZR group showed higher break strength than that of EV group however there was no significant difference (p>0.05). The break strength of cores were in the increasing order of EV < ZR < PM (p<0.05). Conclusion: We could find that even though the PM group fractured at much higher value than all-ceramic cores, the breakage values of the porcelain of PM group with crack formation or delamination, which will be regarded as clinical failure, was significantly higher than that of EV group and not significantly higher than that of ZR group at p-values of 0.05. The break strength of ZR group was higher than that of EV group at an insignificant level(p>0.05).

Design of a Readout Circuit of Pulse Rate and Pulse Waveform for a U-Health System Using a Dual-Mode ADC (이중 모드 ADC를 이용한 U-Health 시스템용 맥박수와 맥박파형 검출 회로 설계)

  • Shin, Young-San;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제50권9호
    • /
    • pp.68-73
    • /
    • 2013
  • In this paper, we proposed a readout circuit of pulse waveform and rate for a U-health system to monitor health condition. For long-time operation without replacing or charging a battery, either pulse waveform or pulse rate is selected as the output data of the proposed readout circuit according to health condition of a user. The proposed readout circuit consists of a simple digital logic discriminator and a dual-mode ADC which operates in the ADC mode or in the count mode. Firstly, the readout circuit counts pulse rate for 4 seconds in the count mode using the dual-mode ADC. Health condition is examined after the counted pulse rate is accumulated for 1 minute in the discriminator. If the pulse rate is out of the preset normal range, the dual-mode ADC operates in the ADC mode where pulse waveform is converted into 10-bit digital data with the sampling frequency of 1 kHz. These data are stored in a buffer and transmitted by 620 kbps to an external monitor through a RF transmitter. The data transmission period of the RF transmitter depends on the operation mode. It is generally 1 minute in the normal situation or 1 ms in the emergency situation. The proposed readout circuit was designed with $0.11{\mu}m$ process technology. The chip area is $460{\times}800{\mu}m^2$. According to measurement, the power consumption is $161.8{\mu}W$ in the count mode and $507.3{\mu}W$ in the ADC mode with the operating voltage of 1 V.

Electro-rheological Measurements of Phase Inversion of Emulsions under Shear Flow (전단응력 하에서 에멀젼 상 변이의 측정을 위한 전기 유변학적 연구)

  • Seung Jae, Baik;Young-Jin, Lee;Yoon Sung, Nam;Chin Han, Kim;Han Kon, Kim;Hak Hee, Kang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제30권2호
    • /
    • pp.147-151
    • /
    • 2004
  • This study aims at measuring electrical and rheological properties of cosmetic emulsions on the skin under shear flow. The effects of volume ratio and surfactants on structural changes of emulsions were examined by determining the changes of electrical resistance, viscosity, and morphology. As the ratio of the internal phase increased, the phase inversion occurred more quickly. The viscosity change was found to increase with increasing of the variation of electrical resistance of the emulsions. This phenomenon may be caused by decreased resistant force against the shear flow because of the breakdown of the internal phase. Surfactants a]so played a key ro]e on phase transition of emulsions. It is likely that polymeric surfactants anchoring on the emulsion surface reinforced the interfacial mechanical strength. As the concentration of surfactants increased, the phase transition occurred more slowly. It has been demonstrated that the phase changes of emulsions under shear flow can be monitored on the real-time basis by using a JELLI$\^$TM/ chip system, a combination of conductiometry and rheometry. Our approach is expected to a useful experimental tool for predicting the phase transition of the cosmetic products during skin application.

A 1.1V 12b 100MS/s 0.43㎟ ADC based on a low-voltage gain-boosting amplifier in a 45nm CMOS technology (45nm CMOS 공정기술에 최적화된 저전압용 이득-부스팅 증폭기 기반의 1.1V 12b 100MS/s 0.43㎟ ADC)

  • An, Tai-Ji;Park, Jun-Sang;Roh, Ji-Hyun;Lee, Mun-Kyo;Nah, Sun-Phil;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제50권7호
    • /
    • pp.122-130
    • /
    • 2013
  • This work proposes a 12b 100MS/s 45nm CMOS four-step pipeline ADC for high-speed digital communication systems requiring high resolution, low power, and small size. The input SHA employs a gate-bootstrapping circuit to sample wide-band input signals with an accuracy of 12 bits or more. The input SHA and MDACs adopt two-stage op-amps with a gain-boosting technique to achieve the required DC gain and high signal swing range. In addition, cascode and Miller frequency-compensation techniques are selectively used for wide bandwidth and stable signal settling. The cascode current mirror minimizes current mismatch by channel length modulation and supply variation. The finger width of current mirrors and amplifiers is laid out in the same size to reduce device mismatch. The proposed supply- and temperature-insensitive current and voltage references are implemented on chip with optional off-chip reference voltages for various system applications. The prototype ADC in a 45nm CMOS demonstrates the measured DNL and INL within 0.88LSB and 1.46LSB, respectively. The ADC shows a maximum SNDR of 61.0dB and a maximum SFDR of 74.9dB at 100MS/s, respectively. The ADC with an active die area of $0.43mm^2$ consumes 29.8mW at 100MS/s and a 1.1V supply.

A Hardwired Location-Aware Engine based on Weighted Maximum Likelihood Estimation for IoT Network (IoT Network에서 위치 인식을 위한 가중치 방식의 최대우도방법을 이용한 하드웨어 위치인식엔진 개발 연구)

  • Kim, Dong-Sun;Park, Hyun-moon;Hwang, Tae-ho;Won, Tae-ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제53권11호
    • /
    • pp.32-40
    • /
    • 2016
  • IEEE 802.15.4 is the one of the protocols for radio communication in a personal area network. Because of low cost and low power communication for IoT communication, it requires the highest optimization level in the implementation. Recently, the studies of location aware algorithm based on IEEE802.15.4 standard has been achieved. Location estimation is performed basically in equal consideration of reference node information and blind node information. However, an error is not calculated in this algorithm despite the fact that the coordinates of the estimated location of the blind node include an error. In this paper, we enhanced a conventual maximum likelihood estimation using weighted coefficient and implement the hardwired location aware engine for small code size and low power consumption. On the field test using test-beds, the suggested hardware based location awareness method results better accuracy by 10 percents and reduces both calculation and memory access by 30 percents, which improves the systems power consumption.

An Efficient Test Data Compression/Decompression for Low Power Testing (저전력 테스트를 고려한 효율적인 테스트 데이터 압축 방법)

  • Chun Sunghoon;Im Jung-Bin;Kim Gun-Bae;An Jin-Ho;Kang Sungho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • 제42권2호
    • /
    • pp.73-82
    • /
    • 2005
  • Test data volume and power consumption for scan vectors are two major problems in system-on-a-chip testing. Therefore, this paper proposes a new test data compression/decompression method for low power testing. The method is based on analyzing the factors that influence test parameters: compression ratio, power reduction and hardware overhead. To improve the compression ratio and the power reduction ratio, the proposed method is based on Modified Statistical Coding (MSC), Input Reduction (IR) scheme and the algorithms of reordering scan flip-flops and reordering test pattern sequence in a preprocessing step. Unlike previous approaches using the CSR architecture, the proposed method is to compress original test data, not $T_{diff}$, and decompress the compressed test data without the CSR architecture. Therefore, the proposed method leads to better compression ratio with lower hardware overhead and lower power consumption than previous works. An experimental comparison on ISCAS '89 benchmark circuits validates the proposed method.

Compact Field Remapping for Dynamically Allocated Structures (동적으로 할당된 구조체를 위한 압축된 필드 재배치)

  • Kim, Jeong-Eun;Han, Hwan-Soo
    • Journal of KIISE:Software and Applications
    • /
    • 제32권10호
    • /
    • pp.1003-1012
    • /
    • 2005
  • The most significant difference of embedded systems from general purpose systems is that embedded systems are allowed to use only limited resources including battery and memory. Especially, the number of applications increases which deal with multimedia data. In those systems with high data computations, the delay of memory access is one of the major bottlenecks hurting the system performance. As a result, many researchers have investigated various techniques to reduce the memory access cost. Most programs generally have locality in memory references. Temporal locality of references means that a resource accessed at one point will be used again in the near future. Spatial locality of references is that likelihood of using a resource gets higher if resources near it were just accessed. The latest embedded processors usually adapt cache memory to exploit these two types of localities. Processors access faster cache memory than off-chip memory, reducing the latency. In this paper we will propose the enhanced dynamic allocation technique for structure-type data in order to eliminate unused memory space and to reduce both the cache miss rate and the application execution time. The proposed approach aggregates fields from multiple records dynamically allocated and consecutively remaps them on the memory space. Experiments on Olden benchmarks show $13.9\%$ L1 cache miss rate drop and $15.9\%$ L2 cache miss drop on average, compared to the previously proposed techniques. We also find execution time reduced by $10.9\%$ on average, compared to the previous work.

A Fully Digital Automatic Gain Control System with Wide Dynamic Range Power Detectors for DVB-S2 Application (넓은 동적 영역의 파워 검출기를 이용한 DVB-S2용 디지털 자동 이득 제어 시스템)

  • Pu, Young-Gun;Park, Joon-Sung;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • 제46권9호
    • /
    • pp.58-67
    • /
    • 2009
  • This paper presents a fully digital gain control system with a new high bandwidth and wide dynamic range power detector for DVB-S2 application. Because the peak-to-average power ratio (PAPR) of DVB-S2 system is so high and the settling time requirement is so stringent, the conventional closed-loop analog gain control scheme cannot be used. The digital gain control is necessary for the robust gain control and the direct digital interface with the baseband modem. Also, it has several advantages over the analog gain control in terms of the settling time and insensitivity to the process, voltage and temperature variation. In order to have a wide gain range with fine step resolution, a new AGC system is proposed. The system is composed of high-bandwidth digital VGAs, wide dynamic range power detectors with RMS detector, low power SAR type ADC, and a digital gain controller. To reduce the power consumption and chip area, only one SAR type ADC is used, and its input is time-interleaved based on four power detectors. Simulation and measurement results show that the new AGC system converges with gain error less than 0.25 dB to the desired level within $10{\mu}s$. It is implemented in a $0.18{\mu}m$ CMOS process. The measurement results of the proposed IF AGC system exhibit 80-dB gain range with 0.25-dB resolution, 8 nV/$\sqrt{Hz}$ input referred noise, and 5-dBm $IIP_3$ at 60-mW power consumption. The power detector shows the 35dB dynamic range for 100 MHz input.

Analysis on the Temperature of Multi-core Processors according to Placement of Functional Units and L2 Cache (코어 내부 구성요소와 L2 캐쉬의 배치 관계에 따른 멀티코어 프로세서의 온도 분석)

  • Son, Dong-Oh;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • 제19권4호
    • /
    • pp.1-8
    • /
    • 2014
  • As cores in multi-core processors are integrated in a single chip, power density increased considerably, resulting in high temperature. For this reason, many research groups have focused on the techniques to solve thermal problems. In general, the approaches using mechanical cooling system or DTM(Dynamic Thermal Management) have been used to reduce the temperature in the microprocessors. However, existing approaches cannot solve thermal problems due to high cost and performance degradation. However, floorplan scheme does not require extra cooling cost and performance degradation. In this paper, we propose the diverse floorplan schemes in order to alleviate the thermal problem caused by the hottest unit in multi-core processors. Simulation results show that the peak temperature can be reduced efficiently when the hottest unit is located near to L2 cache. Compared to baseline floorplan, the peak temperature of core-central and core-edge are decreased by $8.04^{\circ}C$, $8.05^{\circ}C$ on average, respectively.

Automatic Interface Synthesis based on IP Categorization and Characteristics Matching (IP 범주화와 특성 대응을 통한 인터페이스 회로 자동 합성)

  • Yun, Chang-Ryul;Jhang, Kyoung-Son
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • 제43권10호
    • /
    • pp.34-44
    • /
    • 2006
  • A system-on-a-chip (SoC) design uses pre-verified IP hardware blocks in order to reduce design time. We need interface circuits to connect IPs with different protocols. In SoC design we should design interface circuits frequently and these tasks are somewhat time-consuming and error-prone. So it is necessary to generate the interface circuits automatically. Several studies have been made on generating interface circuits only from the communication protocols of IPs. With existing approaches, it is not easy to generate interface circuits connecting two IPs only from communication protocols: connection between IP with address and W without address, connection between IP with only one port to transfer address/data and IP with different ports for address and data connection between IP that transfer address and data together and IP that transfer only one address with a number of data in a burst. No consideration of various characteristics of IPs and no changed algorithm are responsible for it. In order to solve this problem, the proposed approach categorizes communication protocols of IPs, and takes characteristics matching of IPs into account during the interface synthesis. In experiments, we show that we could correctly generate and verify interface circuits for IPs with different characteristics.