• Title/Summary/Keyword: System of differential equations

Search Result 763, Processing Time 0.022 seconds

Numerical analysis of the differential pressure venturi-cone flowmeter (차압식 벤튜리콘 유량계에 대한 유동해석)

  • 윤준용;맹주성;이정원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.714-720
    • /
    • 1998
  • The differential pressure venturi-cone flowmeter is an advanced flowmeter which has many advantages such as wide range of measurement, high accuracy, excellent flow turn-down ratio, low headless, short installation pipe length requirement, and etc. Like other differential pressure flowmeters, the venturi-cone flowmeter uses the law of energy conservation, but its shape and position make it perform better than others. The cone acts as its own flow conditioner and mixer, fully conditioning and mixing the flow prior to measurement. For the analysis, we used Reynolds-averaged Wavier-Stokes equations and k-$\omega$ turbulence model. The equations were fully transformed into the computational domain, the pressure-velocity coupling was made through SIMPLER algorithm, and the equations were discretized using finite analytic solutions of the liberalized equations(Finite Analytic Method). To control the separation phenomenon on the cone surface, we proposed a new shape of cone, and analyzed the flowfield in the new flowmeter system, and found the improvement on the performance of the new cone flowmeter.

  • PDF

HIGHER ORDER FULLY DISCRETE SCHEME COMBINED WITH $H^1$-GALERKIN MIXED FINITE ELEMENT METHOD FOR SEMILINEAR REACTION-DIFFUSION EQUATIONS

  • S. Arul Veda Manickam;Moudgalya, Nannan-K.;Pani, Amiya-K.
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.1-28
    • /
    • 2004
  • We first apply a first order splitting to a semilinear reaction-diffusion equation and then discretize the resulting system by an $H^1$-Galerkin mixed finite element method in space. This semidiscrete method yields a system of differential algebraic equations (DAEs) of index one. A priori error estimates for semidiscrete scheme are derived for both differ-ential as well as algebraic components. For fully discretization, an implicit Runge-Kutta (IRK) methods is applied to the temporal direction and the error estimates are discussed for both components. Finally, we conclude the paper with a numerical example.

Power System Equilibrium Optimization (EOPT) with a Nonlinear Interior Point Method (비선형 내점법을 이용한 전력계통 평형점 최적화 (EOPT))

  • Song, Hwa-Chang;Dosano, Jose Rodel
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.8-9
    • /
    • 2006
  • This paper presents a new methodology to calculate an optimal solution of equilibrium to power system differential algebraic equations. It employs a nonlinear interior point method for solving the optimization formulation, which includes dynamic equations representing two-axis synchronous generator models with AVR and speed governing control, algebraic equations, and steady-state nonlinear loads. Equilibrium optimization (EOPT) is useful for diverse purposes in power system analysis and control with consideration of the system frequency constraint.

  • PDF

APPROXIMATE CONTROLLABILITY FOR QUASI-AUTONOMOUS DIFFERENTIAL EQUATIONS

  • JEONG JIN MUN
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.623-631
    • /
    • 2005
  • The approximate controllability for the nonlinear control system with nonlinear monotone hemicontinuous and coercive operator is studied. The existence, uniqueness and a variation of solutions of the system are also given.

Stochastic vibration response of a sandwich beam with nonlinear adjustable visco-elastomer core and supported mass

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.259-270
    • /
    • 2017
  • The stochastic vibration response of the sandwich beam with the nonlinear adjustable visco-elastomer core and supported mass under stochastic support motion excitations is studied. The nonlinear dynamic properties of the visco-elastomer core are considered. The nonlinear partial differential equations for the horizontal and vertical coupling motions of the sandwich beam are derived. An analytical solution method for the stochastic vibration response of the nonlinear sandwich beam is developed. The nonlinear partial differential equations are converted into the nonlinear ordinary differential equations representing the nonlinear stochastic multi-degree-of-freedom system by using the Galerkin method. The nonlinear stochastic system is converted further into the equivalent quasi-linear system by using the statistic linearization method. The frequency-response function, response spectral density and mean square response expressions of the nonlinear sandwich beam are obtained. Numerical results are given to illustrate new stochastic vibration response characteristics and response reduction capability of the sandwich beam with the nonlinear visco-elastomer core and supported mass under stochastic support motion excitations. The influences of geometric and physical parameters on the stochastic response of the nonlinear sandwich beam are discussed, and the numerical results of the nonlinear sandwich beam are compared with those of the sandwich beam with linear visco-elastomer core.

An Implementation Method of Linearized Equations of Motion for Multibody Systems with Closed Loops

  • Bae, D.S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.71-78
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the variables are tightly coupled by the position, velocity, and acceleration level coordinates, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all variables, which are coupled by the constraints. The position velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The Perturbed constraint equations are then simultaneously solved for variations of all variables only in terms of the variations of the independent variables. Finally, the relationships between the variations of all variables and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent variables variations.

APPLICATION OF THE OPERATOR H (α, β) TO THE SARAN FUNCTION FE AND SOME OTHER RESULTS

  • Choi, June-Sang;Kim, Yong-Sup;Hasanov, Anvar
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.441-452
    • /
    • 2011
  • The enormous success of the theory of hypergeometric series in a single variable has stimulated the development of a corresponding theory in two and more variables. A wide variety of investigations in the theory of several variable hypergeometric functions have been essentially motivated by the fact that solutions of many applied problems involving partial differential equations are obtainable with the help of such hypergeometric functions. Here, in this trend, we aim at presenting further decomposition formulas for Saran function $F_E$, which are used to give some integral representations of the function $F_E$. We also present a system of partial differential equations for the Saran function $F_E$.

A NEW METHOD FOR SOLVING THE NONLINEAR SECOND-ORDER BOUNDARY VALUE DIFFERENTIAL EQUATIONS

  • Effati, S.;Kamyad, A.V.;Farahi, M.H.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.183-193
    • /
    • 2000
  • In this paper we use measure theory to solve a wide range of second-order boundary value ordinary differential equations. First, we transform the problem to a first order system of ordinary differential equations(ODE's)and then define an optimization problem related to it. The new problem in modified into one consisting of the minimization of a linear functional over a set of Radon measures; the optimal measure is then approximated by a finite combination of atomic measures and the problem converted approximatly to a finite-dimensional linear programming problem. The solution to this problem is used to construct the approximate solution of the original problem. Finally we get the error functional E(we define in this paper) for the approximate solution of the ODE's problem.

Variational approximate for high order bending analysis of laminated composite plates

  • Madenci, Emrah;Ozutok, Atilla
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.97-108
    • /
    • 2020
  • This study presents a 4 node, 11 DOF/node plate element based on higher order shear deformation theory for lamina composite plates. The theory accounts for parabolic distribution of the transverse shear strain through the thickness of the plate. Differential field equations of composite plates are obtained from energy methods using virtual work principle. Differential field equations of composite plates are obtained from energy methods using virtual work principle. These equations were transformed into the operator form and then transformed into functions with geometric and dynamic boundary conditions with the help of the Gâteaux differential method, after determining that they provide the potential condition. Boundary conditions were determined by performing variational operations. By using the mixed finite element method, plate element named HOPLT44 was developed. After coding in FORTRAN computer program, finite element matrices were transformed into system matrices and various analyzes were performed. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.

Graphic Representation of Solutions of Partial Differential Equations Using their Corresponding Fuzzy Systems

  • 문병수
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.4.2-4
    • /
    • 2003
  • In this paper, we describe how to approximate the solutions of partial differential equations by bicubic spline functions whose interpolation errors at non-grid points are smaller in general than those by linear interpolations of the original solution at grid points. We show that the bicubic spline function can be represented exactly or approximately by a fuzzy system, and that the resulting fuzzy rule table shows the contours of the solution function. Thus, the fuzzy rule table is identified as a digital image and the contours in the rule table provide approximate contours of the solution of partial differential equations. Several illustrative examples are included.

  • PDF