DOI QR코드

DOI QR Code

APPLICATION OF THE OPERATOR H (α, β) TO THE SARAN FUNCTION FE AND SOME OTHER RESULTS

  • Received : 2011.08.10
  • Accepted : 2011.09.16
  • Published : 2011.12.25

Abstract

The enormous success of the theory of hypergeometric series in a single variable has stimulated the development of a corresponding theory in two and more variables. A wide variety of investigations in the theory of several variable hypergeometric functions have been essentially motivated by the fact that solutions of many applied problems involving partial differential equations are obtainable with the help of such hypergeometric functions. Here, in this trend, we aim at presenting further decomposition formulas for Saran function $F_E$, which are used to give some integral representations of the function $F_E$. We also present a system of partial differential equations for the Saran function $F_E$.

Keywords

References

  1. P. Appell and J. Kampe de Feriet, Fonctions Hypergeometriques et Hyper- spheriques; Polynomes d'Hermite, Gauthier - Villars, Paris, 1926.
  2. L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958.
  3. J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeo- metric functions, Quart. J. Math. Oxford Ser. 11 (1940), 249-270. https://doi.org/10.1093/qmath/os-11.1.249
  4. J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeo- metric functions II, Quart. J. Math. Oxford Ser. 12 (1941), 112-128. https://doi.org/10.1093/qmath/os-12.1.112
  5. T. W. Chaundy, Expansions of hypergeometric functions, Quart. J. Math. Oxford Ser. 13 (1942), 159-171. https://doi.org/10.1093/qmath/os-13.1.159
  6. J. Choi, A generalization of Gottlieb polynomials in several variables, Appl. Math. Lett. (2011), DOI: 10.1016/j.aml.2011.07.006.
  7. J. Choi and A. Hasanov, Applications of the operator H (${\alpha},{\beta}$) to the Humbert double hypergeometric functions, Comput. Math. Appl. 61 (2011), 663-671. https://doi.org/10.1016/j.camwa.2010.12.012
  8. J. Choi, A. Hasanov, and H. M. Srivastava, Relations between Lauricella's triple hypergeometric function and the Srivastava function, Integ. Trans. Spec. Func. (2011), DOI: 10.1080/10652469.2011.596710
  9. F. I. Frankl, Selected Works in Gas Dynamics. Nauka, Moscow 1973 (in Russian).
  10. A. Hasanov, Fundamental solutions of generalized bi-axially symmetric Helmholtz equation, Complex Variables and Elliptic Equations 52(8) (2007), 673-683. https://doi.org/10.1080/17476930701300375
  11. A. Hasanov, The solution of the Cauchy problem for generalized Euler-Poisson- Darboux equation, Internat. J. Appl. Math. Stat. 8(7) (2007), 30-44.
  12. A. Hasanov, On a mixed problem for the equation sign $y{\mid}y{\mid}^mu_{xx}+x^nu_{yy} = 0$, Izv. Akad. Nauk UzSSR. ser. Fiz.-mat. Nauk 2 (1982), 28-32 (in Russian).
  13. A. Hasanov and H. M. Srivastava, Some decomposition formulas associated with the Lauricella function $F_A^{(r)}$ A and other multiple hypergeometric functions, App. Math. Lett. 19 (2006), 113-121. https://doi.org/10.1016/j.aml.2005.03.009
  14. A. Hasanov and H. M. Srivastava, Decomposition formulas associated with the Lauricella multivariable hypergeometric functions, Comput. Math. Appl. 53(7) (2007), 1119-1128. https://doi.org/10.1016/j.camwa.2006.07.007
  15. Y. S. Kim, A. Hasanov and C. H. Lee, Some decomposition formulas associated with the Saran function FE, Honam Math. J. 32(4) (2010), 581-592. https://doi.org/10.5831/HMJ.2010.32.4.581
  16. G. Lohofer, Theory of an electromagnetically deviated metal sphere. 1: Absorbed power. SIAM J. Appl. Math. 49 (1989), 567-581. https://doi.org/10.1137/0149032
  17. O.I. Marichev, Handbook of Integral Transforms of Higher Transcendental Func- tions: Theory and Algorithmic Tables, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane and Toronto, 1982.
  18. A. M. Mathai and R. K. Saxena, Generalized Hypergeometric Functions with Ap- plications in Statistics and Physical Sciences, Springer-Verlag, Berlin, Heidelberg and New York, 1973.
  19. A. W. Niukkanen, Generalised hypergeometric series $^NF({_{x1,\;...,\,\;x_N})$ arising in physical and quantum chemical applications, J. Phys. A: Math. Gen. 16 (1983), 1813-1825. https://doi.org/10.1088/0305-4470/16/9/007
  20. S. B. Opps, N. Saad, and H. M. Srivastava, Some reduction and transformation formulas for the Appell hypergeometric function $F_2$, J. Math. Anal. Appl. 302 (2005), 180-195. https://doi.org/10.1016/j.jmaa.2004.07.052
  21. P. A. Padmanabham and H. M. Srivastava, Summation formulas associated with the Lauricella function $F^{(r)}_A$ , Appl. Math. Lett. 13(1) (2000), 65-70. https://doi.org/10.1016/S0893-9659(99)00146-9
  22. E. G. Poole, Introduction to the Theory of Linear Di erential Equations, Claren- don (Oxford University) Press, Oxford, 1936.
  23. S. Saran, Hypergeometric functions of triple variables, Ganita 5 (1956), 77-91.
  24. I. N. Sneddon, Special Functions of Mathematical Physics and Chemistry., Third Ed., Longman, London and New York, 1980.
  25. H. M. Srivastava and B. R. K. Kashyap, Special Functions in Queuing Theory and Related Stochastic Processes, Academic Prees, New York, London and San Francisco, 1982.
  26. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1985.