References
- P. Appell and J. Kampe de Feriet, Fonctions Hypergeometriques et Hyper- spheriques; Polynomes d'Hermite, Gauthier - Villars, Paris, 1926.
- L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958.
- J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeo- metric functions, Quart. J. Math. Oxford Ser. 11 (1940), 249-270. https://doi.org/10.1093/qmath/os-11.1.249
- J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeo- metric functions II, Quart. J. Math. Oxford Ser. 12 (1941), 112-128. https://doi.org/10.1093/qmath/os-12.1.112
- T. W. Chaundy, Expansions of hypergeometric functions, Quart. J. Math. Oxford Ser. 13 (1942), 159-171. https://doi.org/10.1093/qmath/os-13.1.159
- J. Choi, A generalization of Gottlieb polynomials in several variables, Appl. Math. Lett. (2011), DOI: 10.1016/j.aml.2011.07.006.
-
J. Choi and A. Hasanov, Applications of the operator H (
${\alpha},{\beta}$ ) to the Humbert double hypergeometric functions, Comput. Math. Appl. 61 (2011), 663-671. https://doi.org/10.1016/j.camwa.2010.12.012 - J. Choi, A. Hasanov, and H. M. Srivastava, Relations between Lauricella's triple hypergeometric function and the Srivastava function, Integ. Trans. Spec. Func. (2011), DOI: 10.1080/10652469.2011.596710
- F. I. Frankl, Selected Works in Gas Dynamics. Nauka, Moscow 1973 (in Russian).
- A. Hasanov, Fundamental solutions of generalized bi-axially symmetric Helmholtz equation, Complex Variables and Elliptic Equations 52(8) (2007), 673-683. https://doi.org/10.1080/17476930701300375
- A. Hasanov, The solution of the Cauchy problem for generalized Euler-Poisson- Darboux equation, Internat. J. Appl. Math. Stat. 8(7) (2007), 30-44.
-
A. Hasanov, On a mixed problem for the equation sign
$y{\mid}y{\mid}^mu_{xx}+x^nu_{yy} = 0$ , Izv. Akad. Nauk UzSSR. ser. Fiz.-mat. Nauk 2 (1982), 28-32 (in Russian). -
A. Hasanov and H. M. Srivastava, Some decomposition formulas associated with the Lauricella function
$F_A^{(r)}$ A and other multiple hypergeometric functions, App. Math. Lett. 19 (2006), 113-121. https://doi.org/10.1016/j.aml.2005.03.009 - A. Hasanov and H. M. Srivastava, Decomposition formulas associated with the Lauricella multivariable hypergeometric functions, Comput. Math. Appl. 53(7) (2007), 1119-1128. https://doi.org/10.1016/j.camwa.2006.07.007
- Y. S. Kim, A. Hasanov and C. H. Lee, Some decomposition formulas associated with the Saran function FE, Honam Math. J. 32(4) (2010), 581-592. https://doi.org/10.5831/HMJ.2010.32.4.581
- G. Lohofer, Theory of an electromagnetically deviated metal sphere. 1: Absorbed power. SIAM J. Appl. Math. 49 (1989), 567-581. https://doi.org/10.1137/0149032
- O.I. Marichev, Handbook of Integral Transforms of Higher Transcendental Func- tions: Theory and Algorithmic Tables, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane and Toronto, 1982.
- A. M. Mathai and R. K. Saxena, Generalized Hypergeometric Functions with Ap- plications in Statistics and Physical Sciences, Springer-Verlag, Berlin, Heidelberg and New York, 1973.
-
A. W. Niukkanen, Generalised hypergeometric series
$^NF({_{x1,\;...,\,\;x_N})$ arising in physical and quantum chemical applications, J. Phys. A: Math. Gen. 16 (1983), 1813-1825. https://doi.org/10.1088/0305-4470/16/9/007 -
S. B. Opps, N. Saad, and H. M. Srivastava, Some reduction and transformation formulas for the Appell hypergeometric function
$F_2$ , J. Math. Anal. Appl. 302 (2005), 180-195. https://doi.org/10.1016/j.jmaa.2004.07.052 -
P. A. Padmanabham and H. M. Srivastava, Summation formulas associated with the Lauricella function
$F^{(r)}_A$ , Appl. Math. Lett. 13(1) (2000), 65-70. https://doi.org/10.1016/S0893-9659(99)00146-9 - E. G. Poole, Introduction to the Theory of Linear Dierential Equations, Claren- don (Oxford University) Press, Oxford, 1936.
- S. Saran, Hypergeometric functions of triple variables, Ganita 5 (1956), 77-91.
- I. N. Sneddon, Special Functions of Mathematical Physics and Chemistry., Third Ed., Longman, London and New York, 1980.
- H. M. Srivastava and B. R. K. Kashyap, Special Functions in Queuing Theory and Related Stochastic Processes, Academic Prees, New York, London and San Francisco, 1982.
- H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1985.