• Title/Summary/Keyword: System modelling

Search Result 1,408, Processing Time 0.035 seconds

Tracking Control System Design for the Transfer Crane : Design of Full-order Observer with Weighted $H_{\infty}$ Error Bound (트랜스퍼 크레인의 이송위치제어를 위한 서보계 설계 : 가중 $H_{\infty}$ 오차사양을 만족하는 동일차원 관측기 설계)

  • Kim, Y.B.;Jeong, H.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.42-49
    • /
    • 2008
  • The most important job in the container terminal area is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the automated container terminal, it is necessary that the cargo handling equipments are equipped with more intelligent control systems. From the middle of the 1990's, an automated rail-mounted gantry crane(RMGC) and rubber-tired gantry crane(RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes which make the cargo handling be performed effectively in the yards. For this plant, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control and suppressing problems must be considered. Especially, in this paper, the system modelling and tracking control approach are discussed. And, we design the tracking control system incorporating an observer based on the 2DOF servo system design approach to obtain the desired state informations. In the case of observer design, a weighted $H_{\infty}$ error bound approach for a state estimator is considered. Based on an algebraic Riccati equation(inequality) approach, a necessary and sufficient condition for the existence of a full-order estimator which satisfies the weighted $H_{\infty}$ error bound is introduced. Where, the condition for existence of the estimator is denoted by a Linear Matrix Inequality(LMI) which gives an optimized solution and observer gain. Based on this result, we apply it to the tracking control system design for the transfer crane.

  • PDF

Mathematical modelling of moving target and development of real time tracking method using Kalman filter

  • Lee, Man-Hyung;Kim, Jong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.765-769
    • /
    • 1987
  • Some of the initial steps necessary for the application of Kalman filter will be discussed in general. The application of filtering for tracking system will then be illustrated by simple examples. Practical implementation problems as well as hardware synthesis difficulties, are discussed.

  • PDF

Controller design of heavy load driving system (대부하 구동시스템의 제어기 설계)

  • 윤강섭;안태영;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.730-735
    • /
    • 1992
  • In this study, heavy loads driving servo control systems, which are composed of electro-hydraulic servo-valve, hydraulic motor/cylinder, gear box and link mechanism, are investigated for implemention. To predict the performances of the systems, modelling and simulation with some nonlinearities are carried out. Simulation results are compared with experimental results.

  • PDF

Design of robust autopilot for underwater vehicle (수중운동체의 강인한 자동조종장치 설계)

  • 정연태;김인환;옥질표;권순홍;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.653-657
    • /
    • 1990
  • Since linearized equations of notion have much modelling errors, robust controller for disturbances and noises Is necessary for autopilot. In this paper, notion equations for underwater vehicle with six degree-of-freedom are derived and linearized. And robust autopilot for this system is designed by using LQG/LTR methodology.

  • PDF