• 제목/요약/키워드: System failure

검색결과 5,600건 처리시간 0.027초

FFTA(Fuzzy Fault Tree Analysis)에 의한 불확실한 고장정보 연구 (Development of uncertainly failure information for FFTA)

  • 정영득;박주식;김건호;강경식
    • 대한안전경영과학회지
    • /
    • 제3권2호
    • /
    • pp.113-121
    • /
    • 2001
  • Today, facilities are composed of many complex components or parts. Because of this characteristics, the frequency of failures is decreasing, but the strength of failures is increasing; therefore, the failure analysis about many complex components or parts was needed. In the former research about Fault Tree Analysis, failure data of similar facilities have been used for forecasting about target system or components, but in case that the system or components for forecasting failure is new or qualitative and quantitative data are given simultaneously, there are many difficulty in using Fault Tree Analysis with this incorrect failure data. Therefore, this paper deal with the Fault Tree Analysis method which be applied with Fuzzy theory in above case. In case that , therefore, if there is no the correct failure data, it is represented a system or components as qualitative variable. subsequently, it converted to the quantitative value using fuzzy theory, and the values used as the value for failure forecast.

  • PDF

HRSF: Single Disk Failure Recovery for Liberation Code Based Storage Systems

  • Li, Jun;Hou, Mengshu
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.55-66
    • /
    • 2019
  • Storage system often applies erasure codes to protect against disk failure and ensure system reliability and availability. Liberation code that is a type of coding scheme has been widely used in many storage systems because its encoding and modifying operations are efficient. However, it cannot effectively achieve fast recovery from single disk failure in storage systems, and has great influence on recovery performance as well as response time of client requests. To solve this problem, in this paper, we present HRSF, a Hybrid Recovery method for solving Single disk Failure. We present the optimal algorithm to accelerate failure recovery process. Theoretical analysis proves that our scheme consumes approximately 25% less amount of data read than the conventional method. In the evaluation, we perform extensive experiments by setting different number of disks and chunk sizes. The results show that HRSF outperforms conventional method in terms of the amount of data read and failure recovery time.

배전계통 설비의 시변 고장률 추출 (Extraction of Time-varying Failure Rate for Power Distribution System Equipment)

  • 문종필;이희태;김재철;박창호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권11호
    • /
    • pp.548-556
    • /
    • 2005
  • Reliability evaluation of power distribution system is very important to both power utilities and customers. It present the probabilistic number and duration of interruption such as failure rate, SATDI, SAIFI, and CAIDI. However, it has a fatal weakness at reliability index because of accuracy of failure rate. In this paper, the Time-varying Failure Rate(TFR) of power distribution system equipment is extracted from the recorded failure data of KEPCO(Korea Electric Power Corporation) in Korea. For TFR extraction, it is used that the fault data accumulated by KEPCO during 10 years. The TFR is approximated to bathtub curve using the exponential(random failure) and Weibull(aging failure) distribution function. In addition, Kaplan-Meier estimation is applied to TFR extraction because of incomplete failure data of KEPCO. Finally, Probability plot and regression analysis is applied. It is presented that the extracted TFR is more effective and useful than Mean Failure Rate(MfR) through the comparison between TFR and MFR

가혹환경 하에서 사용되는 시스템의 외부환경보수에 대한 고장률 모형 (Failure Rate Model of External Environment Maintenance for a System under Severe Environment)

  • 박종훈;신윤제;이상천;이창훈
    • 대한산업공학회지
    • /
    • 제36권1호
    • /
    • pp.69-77
    • /
    • 2010
  • The failure rate model of External Environment Maintenance(EEM) for a system under severe environment is investigated. EEM, which is recently introduced concept, is a maintenance activity controlling external environment factors that potentially cause system failure such as cleaning equipment, controlling temperature (humidity) and removing dust inside of electronic appliances. EEM can not have any influence on the inherent failure rate of a system but reduce the severity of the external environment causing failure since it deals with only external environment factors. Therefore, we propose two failure rate models to express the improvement effect of EEM: The intensity reduction model and age reduction model. The intensity and age reduction models of EEM are developed assuming the quality of improvement effect is proportioned to an extra intensity or age respectively. The validation of proposed failure rate models is performed in order of data generation, parameter estimation and test for goodness-of-fit.

다중파괴모드를 고려한 사면안정해석 (Slope Stability Analysis Considering Multi Failure Mode)

  • 김현기;김수삼
    • 한국철도학회논문집
    • /
    • 제14권1호
    • /
    • pp.24-30
    • /
    • 2011
  • 최저 안전율 또는 최대 파괴확률을 기반으로 하는 기존의 사면안정해석에 대하여, 지반물성과 해석모델이 갖는 고유 불확실성을 최소화하고, 사면안정해석에서 다양한 안정해석모델과 그에 따른 파괴형상을 반영할 수 있도록 다중 파괴모드에 대한 동시 파괴확률을 고려한 사면의 신뢰성해석기법을 제안하였다. 붕괴현장조사를 통하여 현장에서 가장 빈번하게 발생하는 파괴형식을 다파괴모드로 정의하였다. 동시 파괴확률의 산정에는 체계 신뢰성해석분야에서 최근 도입된 선형계획법에 의한 최적화를 이용하였으며, 이를 통하여 여러 가지 해석모델을 신뢰성 기반으로 동시에 고려하여 해석할 수 있다. 이 방법의 적용성 평가를 위하여 기존 문헌에서 나타난 제방에 대한 신뢰성해석 결과와 비교하였다. 다중 파괴모드에 대한 동시 파괴확률을 고려한 사면의 신뢰성 해석을 적용한 결과, 전체 시스템에 대한 대한 안정성을 정량적으로 산출할 수 있음을 확인하였다.

무기체계의 안전 설계를 위한 DFMEA 적용에 관한 연구 (A Study on the Application of DFMEA for Safety Design of Weapon System)

  • 서양우;오영일;김희욱;김소정
    • 시스템엔지니어링학술지
    • /
    • 제18권1호
    • /
    • pp.46-57
    • /
    • 2022
  • In this paper, we proposed the DFMEA Implementation Method for safety design of Weapon System. First, we presented the process for DFMEA. And then, the case analysis of OOO missile was performed in accordance with the process presented. After defining the system requirements of OOO missile, failure definition scoring criteria was set. In order to clarify the definition of failure, the failure was classified into safety, reliability, maintainability and others. After performing the function analysis, the relationship matrix analysis was performed to identify the failure mode according to the function without omission. After clarifying the failure classification, mode of failure, cause of failure and effect were analyzed to calculate the severity, occurrence and detection values. After the action priority was judged, the recommended action according to the failure classification was identified for the determined action priority. The results of this study can be used as a relevant basis for the design reflection and resource re-allocation of stakeholders.

시스템의 치명도 분석을 위한 고장영향확률 정량화 방안 연구 (A Study on the Quantitative Determination of Failure Effect Probability for Criticality Analysis on System)

  • 이명석;최성대;허장욱
    • 한국기계가공학회지
    • /
    • 제18권8호
    • /
    • pp.31-37
    • /
    • 2019
  • The inter-development of FMECA is very important to assess the effect of potential failures during system operation on mission, safety and performance. Among these, criticality analysis is a core task that identifies items with high risk and selects the analyzed objects as the key management targets and reflects their effects to the design optimization. In this paper, we analyze the theory related to criticality analysis following US military standard, and propose a method to quantify the failure effect probability for objective criticality analysis. The criticality analysis according to the US military standard depends on the subjective judgment of the failure probability. The methodology for quantifying the failure effect probability is presented by using the reliability theory and the Bayes theorem. The failure rate is calculated by applying the method to quantify failure effect probability.

SVM 기법을 적용한 구름베어링의 부식 고장진단 (Corrosion Failure Diagnosis of Rolling Bearing with SVM)

  • 고정일;이의영;이민재;최성대;허장욱
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.35-41
    • /
    • 2021
  • A rotor is a crucial component in various mechanical assemblies. Additionally, high-speed and high-efficiency components are required in the automotive industry, manufacturing industry, and turbine systems. In particular, the failure of high-speed rotating bearings has catastrophic effects on auxiliary systems. Therefore, bearing reliability and fault diagnosis are essential for bearing maintenance. In this work, we performed failure mode and effect analysis on bearing rotors and determined that corrosion is the most critical failure type. Furthermore, we conducted experiments to extract vibration characteristic data and preprocess the vibration data through principle component analysis. Finally, we applied a machine learning algorithm called support vector machine to diagnose the failure and observed a classification performance of 98%.

Sensitivity analysis of failure correlation between structures, systems, and components on system risk

  • Seunghyun Eem ;Shinyoung Kwag ;In-Kil Choi ;Daegi Hahm
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.981-988
    • /
    • 2023
  • A seismic event caused an accident at the Fukushima Nuclear Power Plant, which further resulted in simultaneous accidents at several units. Consequently, this incident has aroused great interest in the safety of nuclear power plants worldwide. A reasonable safety evaluation of such an external event should appropriately consider the correlation between SSCs (structures, systems, and components) and the probability of failure. However, a probabilistic safety assessment in current nuclear industries is performed conservatively, assuming that the failure correlation between SSCs is independent or completely dependent. This is an extreme assumption; a reasonable risk can be calculated, or risk-based decision-making can be conducted only when the appropriate failure correlation between SSCs is considered. Thus, this study analyzed the effect of the failure correlation of SSCs on the safety of the system to realize rational safety assessment and decision-making. Consequently, the impact on the system differs according to the size of the failure probability of the SSCs and the AND and OR conditions.

Evaluation of the Interruption Cost of Distribution Power Systems Considering the Failure Source and the Composite Customer Interruption Cost

  • Park, Sang-Bong;Nam, Kee-Young;Kim, Dae-Kyeong;Jeong, Seong-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권3호
    • /
    • pp.124-129
    • /
    • 2003
  • As the power industry moves towards open competition, there has been a call for methodology to evaluate power system reliability by using composite interruption cost. This paper presents algorithms to evaluate the interruption cost of distribution power systems by taking into consideration the failure source and the composite customer interruption cost. From the consumer's standpoint, the composite customer interruption cost is considered as the most valuable index to estimate the reliability of a power distribution system. This paper presents new algorithms that take into account the load by customer type and failure probability by distribution facilities while calculating the amount of unserved energy by customer type. Finally, evaluation results of unserved energy and system interruption cost based on composite customer interruption cost are shown in detail.