• 제목/요약/키워드: System failure

검색결과 5,600건 처리시간 0.04초

거동 특성에 따른 사면 파괴 지수 시스템 : SFi-system (Slope Failure Index System Based on the Behavior Characteristics : SFi-system)

  • 윤운상;정의진;최재원;김정환;김원영;김춘식
    • 한국지반공학회논문집
    • /
    • 제18권2호
    • /
    • pp.23-37
    • /
    • 2002
  • 절취 사면에서의 파괴는 사면의 내부 또는 외부 요인들의 결합에 의해 발생한다. 내부 요인은 사면 자체의 지질 또는 형상 조건과 관련된 파괴 요인이며, 외부 요인은 자연적 또는 인위적으로 사면에 가해지는 파괴 요인이다. 각 요인에 의한 사면 파괴에 기치는 영향의 정도는 사면을 구성하는 지반 조건에 따라 다르며, 사면의 거동 특성에 의해 제어된다. 이 연구에서는 사면의 지반 조건을 거동 특성에 따라 구분하는 기준으로 토층심도율(SR), 블록크기비(BR) 및 암석강도를 사용하였다. 이런 기준에 의하면 사면의 지반 조건은 불연속체적 절리 암반과 연속체적 토상 지반, 파쇄 암반, 괴상 암반으로 구분된다. SFi-system은 이와 같이 구분된 지반 조건에 따라 내부 파괴 요인과 외부 파괴 요인을 평가함으로써 사면 파괴 지수(SFi)를 결정하는 평가 시스템이다. 이 평가 시스템을 실제적으로 사면에 적용한 결과, 사면 파괴 지수는 사면 파괴의 가능성 및 규모와 밀접한 관련이 있음을 보여준다. 따라서 SFi-system은 사면의 파괴 예측과 그 특성 분석을 위한 효과적인 도구로 사용될 수 있다.

소형 모사 장비의 데이터를 이용한 선박용 전기 추진 모터의 고장 유형별 진동 신호의 분류 (Classification of Vibration Signals for Different Types of Failures in Electric Propulsion Motors for Ships Using Data from Small-Scale Apparatus)

  • 유승열;장준교;전민성;이재철;강동훈;이순섭
    • 대한조선학회논문집
    • /
    • 제60권6호
    • /
    • pp.441-449
    • /
    • 2023
  • With the enforcement of environmental regulations by the International Maritime Organization, the market for eco-friendly ships is expanding, and ships using electric propulsion devices are emerging as a promising solution. Many studies have been conducted to predict the failure of ships, but most of them are mainly research on the main diesel engine of ships. As the ship's propulsion method changes, new data is needed to predict the failure of electric propulsion ships. In this paper aims to analyze the failure characteristics of the electric propulsion system in consideration of the difference in the type of failure between the internal diesel engine and the electric propulsion system. The ship's propulsion unit assumed a DC motor and a signal pattern for normal conditions and general failure modes, but the failure record of the electric propulsion device operated on the actual ship was not available, so it generated a failure signal for small electric motor equipment to identify the failure signal. Assuming unbalance, misalignment, and bearing failure, which are the primary failure modes of the ship's electric motor, a failure signal was generated using a "rotator vibration data generator," and the frequency band, size, and phase difference of the measured vibration signal were analyzed to analyze the characteristics of each failure condition. Finally, the characteristics of each failure condition were identified so that the signals according to the failure type could be classified.

항공기용 유압 시스템 신뢰도 및 정비도 분석 프로세스 고찰 (A Study on the Reliability and Maintainability Analysis Process for Aircraft Hydraulic System)

  • 한창환;김근배
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.105-112
    • /
    • 2016
  • An aircraft must be designed to minimize system failure rate for obtaining the aircraft safety, because the aircraft system failure causes a fatal accident. The safety of the aircraft system can be predicted by analyzing availability, reliability, and maintainability of the system. In this study, the reliability and the maintainability of the hydraulic system are analysed except the availability, and therefore the reliability and the maintainability analysis process and the results are presented for a helicopter hydraulic system. For prediction of the system reliability, the failure rate model presented in MIL-HDBK-217F is used, and MTBF is calculated by using the Part Stress Analysis Prediction and quality/temperature/environmental factors described in NPRD-95 and MIL-HDBK-338B. The maintainability is predicted by FMECA(Failure Mode, Effect & Criticality Analysis) based on MIL-STD-1629A.

Studies on a standby repairable system with two types of failure

  • El-Damcese, M.A.;Shama, M.S.
    • International Journal of Reliability and Applications
    • /
    • 제16권2호
    • /
    • pp.99-111
    • /
    • 2015
  • In this paper, we study the reliability analysis of a repairable system with two types of failure in which switching failures and reboot delay are considered. Let units in this system be cold standby, and failure rate and repair rate of [type1, type2] components be exponentially distributed. The expressions of reliability characteristics - such as the system reliability and the mean time to system failure MTTF - are derived. We use several cases to graphically analyze the effect of various system parameters on the system reliability and MTTF. We also perform a sensitivity analysis of the reliability characteristics with changes in specific values of the system's parameters.

유도전동기 베어링의 원거리 실시간 결함진단시스템 개발 (Web-based Real Time Failure Diagnosis System Development for Induction Motor Bearing)

  • 권오헌;이승현
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.1-8
    • /
    • 2005
  • The industrial induction motor is widely used in the rotating electrical machine for the transmission of power. It is very reliable equipment, but it could lead to the loss of production and lift when failure occurs. Therefore, the failure data is acquired and analyzed by attaching an exclusive instrument to existing induction motor. However, these instruments could lead to side effects, increasing the production costs, because they are very expensive. The purpose of this study is the development of an induction motor bearing failure diagnosis system constructed using LabVIEW which can be supplied the kernelled function, process monitoring and current signature analysis. In addition, the availability and reasonability of the constructed system was examined for an induction motor with failure defects in outer raceway and ball bearing. From the results, it shows that failure diagnosis system constructed is useful for real-time monitoring with detection of bearing defects over the web.

베이즈 규칙을 활용한 배전선로 위험도 평가모델 -가공배전분야- (A Risk Evaluation Model of Power Distribution Line Using Bayesian Rule -Overhead Distribution System-)

  • 정종만;박용우
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.870-875
    • /
    • 2013
  • After introducing diagnosis equipment power failure prevention activities for distribution system have become more active. To do facility diagnosis and maintenance work more efficiently we need to evaluate reliability for the system and should determine the priority line with appropriate criteria. Thus, to calculate risk factor for the power distribution line that are composed of many component facilities its historical failure events for the last 5 years are collected and analysed. The failure statics show that more than 60% of various failures are related to environment factors randomly and about 20% of the failures are refer to the aging. As a strategic evaluation system reflecting these environmental influence is needed, a system on the basis of the probabilistic approach related statical variables in terms of failure rate and failure probability of electrical components is proposed. The figures for the evaluation are derived from the field failure DB. With adopting Bayesian rule we can calculate easily about conditional probability query. The proposed evaluation system is demonstrated with model system and the calculated indices representing the properties of the model line are discussed.

주기적인 검사 정책하에서 최적예방 교체시기 결정에 관한 연구 (A Study of Optimal Maintenance Schedules of a System under the Periodic Inspection Policy)

  • 정현태;김제승
    • 산업경영시스템학회지
    • /
    • 제20권44호
    • /
    • pp.263-271
    • /
    • 1997
  • This paper presents a preventive maintenance model for determining the preventive replacement period of a system in which a failure rate is affected by the cumulative damage of fault and inspection. Especially, the failure rate function is considered to be a function of the cumulative damage of the fault and inspection time. Types of replacement considered are preventive replacement and failure replacement. Failure rate and expected cost function between replacement are derived. An optimal policy is obtained that minimizes the average cost per unit time for preventive replacement, failure replacement, inspection and repair.

  • PDF

펌프-밸브 시스템의 DES 접근론적 Failure Diagnosis (DES Approach Failure Diagnosis of Pump-valve System)

  • 손형일;김기웅;이석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.643-646
    • /
    • 2000
  • As many industrial systems become more complex, it becomes extremely difficult to diagnose the cause of failures. This paper presents a failure diagnosis approach based on discrete event system theory. In particular, the approach is a hybrid of event-based and state-based ones leading to a simpler failure diagnoser with supervisory control capability. The design procedure is presented along with a pump-valve system as an example.

  • PDF

배전 계통 신뢰도에서 고장률 산출 기법에 관한 연구 (A Study of Failure Rate Calculation Methods in Distribution System Reliability)

  • 채희석;신희상;강병욱;류기환;김재철;추동욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.326-327
    • /
    • 2011
  • Failure rate serves as a pivotal role in reliability study. When the system operates, failure datum of the system reflects the actual operating environment. Therefore, when we estimate the system's with the component failure data, we can find the more exact failure rate that reflected the system's operating environment. In this paper, we use the components' fault data and find out failure rate.

  • PDF

하이브리드 로켓 점화 장치의 신뢰도 예측 (Reliability Prediction of Hybrid Rocket Ignition System)

  • 문근환;문희장;최주호;김진곤
    • 한국항공운항학회지
    • /
    • 제24권4호
    • /
    • pp.26-34
    • /
    • 2016
  • In this study, reliability prediction of the ignition system of hybrid rocket is performed. The FMECA is preceded to the reliability prediction. To this end, the ignition system is divided into 5 components and 19 potential failure modes. The failure cause and effects are identified and criticality analysis is carried out for each failure mode, in which the criticality number is estimated using the failure rate databases. Among the numbers, the failure modes and components with higher criticality and severity are chosen and allocated with higher weighting factor. The reliability predictions are performed using the failure rate databases, from which the current ignition system is found to satisfy the target reliability.