• Title/Summary/Keyword: System boundary

Search Result 3,712, Processing Time 0.034 seconds

Development of Simplified Immersed Boundary Method for Analysis of Movable Structures (가동물체형 구조물 해석을 위한 Simplified Immersed Boundary법의 개발)

  • Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.93-100
    • /
    • 2021
  • Since the IB (Immersed Boundary) method, which can perform coupling analysis with objects and fluids having an impermeable boundary of arbitrary shape on a fixed grid system, has been developed, the IB method in various CFD models is increasing. The representative IB methods are the directing-forcing method and the ghost cell method. The directing-forcing type method numerically satisfies the boundary condition from the fluid force calculated at the boundary surface of the structure, and the ghost-cell type method is a computational method that satisfies the boundary condition through interpolation by placing a virtual cell inside the obstacle. These IB methods have a disadvantage in that the computational algorithm is complex. In this study, the simplified immersed boundary (SIB) method enables the analysis of temporary structures on a fixed grid system and is easy to expand to three proposed dimensions. The SIB method proposed in this study is based on a one-field model for immiscible two-phase fluid that assumes that the density function of each phase moves with the center of local mass. In addition, the volume-weighted average method using the density function of the solid was applied to handle moving solid structures, and the CIP method was applied to the advection calculation to prevent numerical diffusion. To examine the analysis performance of the proposed SIB method, a numerical simulation was performed on an object falling to the free water surface. The numerical analysis result reproduced the object falling to the free water surface well.

CURVED DOMAIN APPROXIMATION IN DIRICHLET'S PROBLEM

  • Lee, Mi-Young;Choo, Sang-Mok;Chung, Sang-Kwon
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.1075-1083
    • /
    • 2003
  • The purpose of this paper is to investigate the piecewise wise polynomial approximation for the curved boundary. We analyze the error of an approximated solution due to this approximation and then compare the approximation errors for the cases of polygonal and piecewise polynomial approximations for the curved boundary. Based on the results of analysis, p-version numerical methods for solving Dirichlet's problems are applied to any smooth curved domain.

FINITE ELEMENT APPROXIMATION AND COMPUTATIONS OF BOUNDARY OPTIMAL CONTROL PROBLEMS FOR THE NAVIER-STOKES FLOWS THROUGH A CHANNEL WITH STEPS

  • Lee, Hyung-Chun;Lee, Yong-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.173-192
    • /
    • 1999
  • We study a boundary optimal control problem of the fluid flow governed by the Navier-Stokes equations. the control problem is formulated with the flow through a channel with steps. The first-order optimality condition of the optimal control is derived. Finite element approximations of the solutions of the optimality system are defined and optimal error estimates are derived. finally, we present some numerical results.

  • PDF

Vibration Control of an Axially Moving Belt by a Nonlinear Boundary Control

  • Park, Ji-Yun;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.38.1-38
    • /
    • 2001
  • In this paper, the vibration suppression problem of an axially moving power transmission belt is investigated. The equations of motion of the moving belt is first derived by using Hamilton´s principle for systems with changing mass. The total mechanical energy of the belt system is considered as a Lyapunov function candidate. Using the Lyapunov second method, a nonlinear boundary control law that guarantees the uniform asymptotic stability is derived. The control performance with the proposed control law is simulated. It is shown that a boundary control can still achieve the uniform stabilization for belt systems.

  • PDF

Sliding Mode Control with Nonlinear Interpolation in Variable Boundary Layer

  • Kim, Yookyung;Jeon, Gijoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.35.1-35
    • /
    • 2002
  • $\textbullet$ Sliding mode control (SMC) with nonlinear interpolation in variable boundary layer (VBL) is proposed $\textbullet$ A sigmoid function is used for nonlinear interpolation in VBL. $\textbullet$ The Parameter of the sigmoid function is tuned by fuzzy controller $\textbullet$ The choice of parameter for the sigmoid function is guided by FC. $\textbullet$ The parameter is continuously updated as boundary layer thickness varies. $\textbullet$ The proposed method hasbetter tracking performance than the conventional linear interpolation $\textbullet$ To demonstrate its performance the proposed control algorithm is applied to a nonlinear system.

  • PDF

ON DICHOTOMY AND CONDITIONING FOR TWO-POINT BOUNDARY VALUE PROBLEMS ASSOCIATED WITH FIRST ORDER MATRIX LYAPUNOV SYSTEMS

  • Murty, M.S.N.;Kumar, G. Suresh
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1361-1378
    • /
    • 2008
  • This paper deals with the study of dichotomy and conditioning for two-point boundary value problems associated with first order matrix Lyapunov systems, with the help of Kronecker product of matrices. Further, we obtain close relationship between the stability bounds of the problem on one hand, and the growth behaviour of the fundamental matrix solution on the other hand.

ENERGY DECAY RATE FOR THE KIRCHHOFF TYPE WAVE EQUATION WITH ACOUSTIC BOUNDARY

  • Kang, Yong-Han
    • East Asian mathematical journal
    • /
    • v.28 no.3
    • /
    • pp.339-345
    • /
    • 2012
  • In this paper, we study uniform exponential stabilization of the vibrations of the Kirchho type wave equation with acoustic boundary in a bounded domain in $R^n$. To stabilize the system, we incorporate separately, the passive viscous damping in the model as like Gannesh C. Gorain [1]. Energy decay rate is obtained by the exponential stability of solutions by using multiplier technique.

A Class of Singular Quadratic Control Problem With Nonstandard Boundary Conditions

  • Lee, Sung J.
    • Honam Mathematical Journal
    • /
    • v.8 no.1
    • /
    • pp.21-49
    • /
    • 1986
  • A class of singular quadratic control problem is considered. The state is governed by a higher order system of ordinary linear differential equations and very general nonstandard boundary conditions. These conditions in many important cases reduce to standard boundary conditions and because of the conditions the usual controllability condition is not needed. In the special case where the coefficient matrix of the control variable in the cost functional is a time-independent singular matrix, the corresponding optimal control law as well as the optimal controller are computed. The method of investigation is based on the theory of least-squares solutions of multi-valued operator equations.

  • PDF

NUMERICAL METHOD FOR A SYSTEM OF SINGULARLY PERTURBED CONVECTION DIFFUSION EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Raja, Velusamy;Tamilselvan, Ayyadurai
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.1015-1027
    • /
    • 2019
  • A class of systems of singularly perturbed convection diffusion type equations with integral boundary conditions is considered. A numerical method based on a finite difference scheme on a Shishkin mesh is presented. The suggested method is of almost first order convergence. An error estimate is derived in the discrete maximum norm. Numerical examples are presented to validate the theoretical estimates.

THOMAS ALGORITHMS FOR SYSTEMS OF FOURTH-ORDER FINITE DIFFERENCE METHODS

  • Bak, Soyoon;Kim, Philsu;Park, Sangbeom
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.891-909
    • /
    • 2022
  • The main objective of this paper is to develop a concrete inverse formula of the system induced by the fourth-order finite difference method for two-point boundary value problems with Robin boundary conditions. This inverse formula facilitates to make a fast algorithm for solving the problems. Our numerical results show the efficiency and accuracy of the proposed method, which is implemented by the Thomas algorithm.