• 제목/요약/키워드: System air permeability

검색결과 96건 처리시간 0.021초

Hybrid Pilot System을 이용한 철도 오염토양 복원 (Remediation of Contaminated Railroad Soils using by Hybrid Pilot System)

  • 박덕신
    • 한국철도학회논문집
    • /
    • 제3권3호
    • /
    • pp.101-108
    • /
    • 2000
  • In this study, we tested hybrid pilot system combined with soil vapor extraction and bioventing methods on the contaminated railroad soil. So, we found out the remediability and operating conditions. Air permeability(k) and gas phase(O$_2$/CO$_2$/VOCs) level trend are very important to determine the remediation rate of the contaminated sites. Throughout hybrid pilot test on different conditions, the range of air permeability(k) was 1985∼1194 darcy. The tests results in hybrid system was appropriate on this test sites, and the suitable injection air flow rate was 3.5㎥/hr. So, we suggested a basic data for the remediation and management of contaminated railroad soil.

  • PDF

투습방수성 Polyurethane 나노섬유 Multi-Membrane의 제조 (Fabrication of Waterproof and Moisture-permeable Polyurethane Nanofiber Multi-Membrane)

  • 양정한;윤남식;김인교;염정현
    • 한국염색가공학회지
    • /
    • 제23권2호
    • /
    • pp.107-117
    • /
    • 2011
  • Polyurethane (PU) was synthesized by one-shot process and the PU nanofiber was prepared by electrospinning. In this study, electrospun PU multi-membranes were prepared with various coating thickness ratio of base resin to top resin, where the base resin contains melamine curing agent and acid catalyst and the top resin contains water-repellent agent of fluoro-carbon compounds. The PU nanofiber multi-membranes were analyzed by field-emission scanning electron microscopy, differential scanning calorimeter, breathability, tensile strenth, air permeability and water resistance. The results showed that the PU multi-membrane provided excellent waterproof and moisture permeability.

연직배수재를 이용한 토양증기추출법의 적용 (Application of Enhanced Soil Vapor Extraction Using PVDs)

  • 신은철;박정준;김종인;최민근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.382-388
    • /
    • 2005
  • Soil vapor extraction(SVE) is an effective and cost efficient method of removing volatile organic compounds(VOCs) and petroleum hydrocarbons from unsaturated soils. However, soil vapor extraction becomes ineffective in soils with low gas permeability, for example soils with air permeabilities less than 1 Darcy. Prefabricated vertical drains(PVDs) have been used for dewatering fine-grained soils for more than 25 years. Incorporating PVDs in and SVE system can extend the effectiveness of SVE to lower permeability soils by shortening the air flow-paths and ultimately expediting contaminant removal. The objective of the work described herein was to effectively incorporate PVDs into a SVE remediation system and to demonstrate a PVDs enhanced SVE system at full scale. The finding from this research will facilitate the design of field PVD-SVE systems in terms by providing insight into the optimal spacing between PVDs, the radius of influence of the wells and the flow rates to be used to capture and extract gas phase contaminants.

  • PDF

화상분석법을 이용한 라텍스개질 콘크리트의 공극 구조와 투수성의 상관성 분석 (Estimation of Air Void System and Permeability of Latex-Modified Concretes by Image Analysis Method)

  • 정원경;윤경구;홍승호
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.695-702
    • /
    • 2005
  • 라텍스개질 콘크리트는 라텍스의 첨가로 인하여 콘크리트의 내구성을 개선하는 것으로 알려져 있으며, 투수저항성이 크게 향상되는 것으로 연구되었다. 본 연구에서는 SBR 라텍스 혼입에 따른 콘크리트 내부 공극 구조의 변화를 연구하고자 화상분석법을 이용하여 라텍스개질 콘크리트의 W/C비, 라텍스 함량, 시멘트 종류에 변화를 주어 간격계수, 경화 후 공기량, 공극 직경에 따른 공극 분포 및 공극 구조 상태 분석 등을 파악하였다. 또한, 라텍스 첨가에 따른 내부 공극 구조 특성과 투수저항성과의 상관성을 비교하였다. 라텍스개질 콘크리트는 내부 공극 분석 결과, 동일 물-시멘트비 조건에서 AE감수제를 사용한 OPC에 비해 더 우수한 연행공극 효과가 있는 것으로 분석되었다. 초속경시멘트는 $100{\mu}m$ 미만의 연행공극의 수가 4배 이상 증가하였다. 조강 시멘트는 SBR 라텍스로 인하여 $50{\sim}500{\mu}m$ 범위의 미세 연행 공기량이 약 7배 이상 증가되는 현상을 나타내었다. 그러나 투수성에 있어서는 낮은 간격계수에도 불구하고 높은 투수저항 특성을 나타내었다. 내구성에 있어서 라텍스개질 콘크리트에서는 공극 구조의 영향보다는 라텍스 폴리머 필름에 의한 영향이 더 큰 것으로 판단되었다.

SAFETY STUDIES ON HYDROGEN PRODUCTION SYSTEM WITH A HIGH TEMPERATURE GAS-COOLED REACTOR

  • TAKEDA TETSUAKI
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.537-556
    • /
    • 2005
  • A primary-pipe rupture accident is one of the design-basis accidents of a High-Temperature Gas-cooled Reactor (HTGR). When the primary-pipe rupture accident occurs, air is expected to enter the reactor core from the breach and oxidize in-core graphite structures. This paper describes an experiment and analysis of the air ingress phenomena and the method fur the prevention of air ingress into the reactor during the primary-pipe rupture accident. The numerical results are in good agreement with the experimental ones regarding the density of the gas mixture, the concentration of each gas species produced by the graphite oxidation reaction and the onset time of the natural circulation of air. A hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR) Is being designed to be able to produce hydrogen by themo-chemical iodine-Sulfur process, using a nuclear heat of 10 MW supplied by the HTTR. The HTTR hydrogen production system is first connected to a nuclear reactor in the world; hence a permeation test of hydrogen isotopes through heat exchanger is carried out to obtain detailed data for safety review and development of analytical codes. This paper also describes an overview of the hydrogen permeation test and permeability of hydrogen and deuterium of Hastelloy XR.

Effect of Low Temperature Plasma Treatment on Wool Fabric Properties

  • Kan C. W.;Yuen C. W. M.
    • Fibers and Polymers
    • /
    • 제6권2호
    • /
    • pp.169-173
    • /
    • 2005
  • Low temperature plasma (LTP) treatment was applied to wool fabric with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabric properties including low-stress mechanical properties, air permeability and thermal properties, were evaluated. The low-stress mechanical properties were evaluated by means of Kawabata Evaluation System Fabric (KES-F) revealing that the tensile, shearing, bending, compression and surface properties were altered after the LTP treatment. The changes in these properties are believed to be related closely to the inter-fiber and inter-yam frictional force induced by the LTP. The decrease in the air permeability of the LTP-treated wool fabric was found to be probably due to the plasma action effect on increasing in the fabric thickness and a change in fabric surface morphology. The change in the thermal properties of the LTP-treated wool fabric was in good agreement with the above findings and can be attributed to the amount of air trapped between the yams and fibers. This study suggested that the LTP treatment can influence the final properties of the wool fabric.

이미지 분석에 의한 콘크리트의 공극 분포 및 공기량 분석 (Air Contents & Size Distribution of Air Voids in Concrete Using Image Analysis)

  • 권혁찬;정원경;윤경구
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.157-164
    • /
    • 2004
  • Air voids in hardened concrete have an important influence on concrete durability such as resistance of freezing and thawing, permeability and surface scaling resistance. Linear traverse method and point count method in ASTM standard method have been widely used to estimate the air void system in hardened concrete. However, these methods are not used at present time, because they are is exhausted much time and effort. In previous study, air voids system of concrete was estimated by spacing factor. The purpose of this study organizes image analysis method by analyzing air contents, air voids distributions by diameters, air voids system as well as spacing factors after hardened concrete. The experimental variables institute of depth of specimen(top, middle, bottom), air contents(AE contents 0, 0.01, 0.03%).

  • PDF

고정형 스크류 혼합 방식을 이용한 초속경 도막방수층 에어 셀 구조의 수증기투과성에 관한 연구 (A Stud on the Water Vapor Permeability of Air Cell Structure of Ultra Rapid Harding Membrane Waterproofing Using Fixed Screw Hybrid Method)

  • 김윤호;김현민;박진상;송제영;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.225-226
    • /
    • 2013
  • Existing polyurethane membrane waterproofing has been raised defects such as heaving. Therefore, We will be utilizing as the basic experimental data by the water vapor permeability test to the air cell structure of ultra rapid harding membrane waterproofing using the static mixing system in this study.

  • PDF

다공성 건축자재의 투습 및 통기성 분석에 대한 연구 (Analysis of Water-Vapor Permeance and Ventilation Property of the Porous Construction Materials)

  • 김종원;안영철
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.754-757
    • /
    • 2008
  • To maintain the indoor air quality, many ventilation systems and technologies have been developed in the highly insulated and air tight buildings. In this study, a porous construction material, which is applicable to passive ventilation system, is developed and measured the performances of the permeability and the resistance of water vapor, and the dust collection efficiency. The average coefficient of water vapor permeability shows $3.6\;g/m^2{\cdot}h{\cdot}mmHg$, which is slightly higher than Hanji ($2.4{\sim}3.2\;g/m^2{\cdot}h{\cdot}mmHg$) and the average water vapor resistance factor shows $0.303\;g/m^2{\cdot}h{\cdot}mmHg/g$, which is slightly smaller than Hanji($0.309{\sim}0.315\;g/m^2{\cdot}h{\cdot}mmHg/g$). The pressure drop of the porous construction material is smaller than the HEPA filter and the minimum dust collection efficiency shows 82.8% in the range of $2{\sim}9\;cm/s$.

  • PDF

콘크리트 내부공극 분석을 위한 행렬간격계수 모델식의 제안 (Proposal of Matrix Spacing Factor for Analyzing Air Void System in Hardened Concrete)

  • 정원경;전인구;김용곤;이봉학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.679-682
    • /
    • 2004
  • Air void systems in hardened concrete has an important influence on concrete durability such as freeze-thaw resistance, water permeability, surface scaling resistance. Linear traverse method and point count method described at ASTM is the routine analysis of the air void system that have been widely used to estimate the spacing factor in hardened concrete. Recently, many concretes often have a spacing factor higher than the generally accepted $200-250{\mu}m$ limit for the usual range of air contents. This study is proposed to estimate the matrix spacing factor by calculation of simplicity. The matrix spacing factor needs two parameters that are air content and numbers of air voids in the hardened concrete. Those are obtained from the standard air-void system analysis of the ASTM C 457. The equation is valid for all values of paste-to-air ratio because the estimation of paste content is unnecessary at the using ASTM C 457. The matrix spacing factor yields a similar estimate of the standard spacing factor.

  • PDF