Electricity has become a factor that dramatically affects the market economy. The day-ahead system marginal price determines electricity prices, and system marginal price forecasting is critical in maintaining energy management systems. There have been several studies using mathematics and machine learning models to forecast the system marginal price, but few studies have been conducted to develop, compare, and analyze various machine learning and deep learning models based on a data-driven framework. Therefore, in this study, different machine learning algorithms (i.e., autoregressive-based models such as the autoregressive integrated moving average model) and deep learning networks (i.e., recurrent neural network-based models such as the long short-term memory and gated recurrent unit model) are considered and integrated evaluation metrics including a forecasting test and information criteria are proposed to discern the optimal forecasting model. A case study of South Korea using long-term time-series system marginal price data from 2016 to 2021 was applied to the developed framework. The results of the study indicate that the autoregressive integrated moving average model (R-squared score: 0.97) and the gated recurrent unit model (R-squared score: 0.94) are appropriate for system marginal price forecasting. This study is expected to contribute significantly to energy management systems and the suggested framework can be explicitly applied for renewable energy networks.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.17
no.6
/
pp.54-59
/
2003
This paper presents hourly system marginal price forecasting of the Korea electric power system using a fuzzy linear regression analysis method. The proposed method is tested by forecasting hourly system marginal price for a week of spring in 2002. The percent average of forecasting error for the proposed method is from 3.14% to 6.10% in the weekdays, from 7.04% to 8.22% in the weekends, and comparable with a artificial neural networks method.
This study analyzed the effect of power output reduction in coal fired power generation on the change of system marginal price and green house gas emissions. Analytical method was used for electricity market forecasting system used in korea state owned companies. Operating conditions of the power system was based on the the 7th Basic Plan for Electricity Demand and Supply. This as a reference, I analyzed change of system marginal price and green house gas emission by reduced power output in coal fired power generation. The results, if the maximum output was declined as 29 [%] to overall coal-fired power plant, system marginal price is reduced 12 [%p] compared to before and decreasing greenhouse gas emissions were 9,966 [kton]. And if the low efficiency coal fired power plant that accounted for 30 [%] in overall coal-fired power plant stopped by year, system marginal price is reduced 14 [%p] compared to before and decreasing greenhouse gas emissions were 12,874 [kton].
It has been recognized that implementing the marginal price mechanism to CBP is not acceptable due to the lack of revenue of the marginal generators. This study shows that it is not the problem of marginal price mechanism but the structural problems originated by the suspension of restructuring, the technical limits of RSC program and inaccuracy of the generation cost estimation method. This study explains the method to calculate the cost function in operating modes of the CC generators and proposes the modeling for the CC generators in RSC program. To implementing the cost function in operating modes could give an opportunity to change the price setting mechanism from average to marginal cost. The price setting mechanism based on the marginal cost will be one of the main points to provide the right price signals and to introduce a real-time and A/S markets to prepare the energy transition era.
The Transactions of The Korean Institute of Electrical Engineers
/
v.59
no.5
/
pp.871-881
/
2010
In the uniform price electricity market or bilateral electricity market, the energy transactions in which the network is not considered and ISO's system operation costs which ISO try to minimize are settled separately. In this paper, transmission loss, one of the ISO's system operation costs, was dealt. The conventional marginal loss allocation method gives economic signals but three aspects have to be considered; excessiveness, arbitrariness and cross-subsidy. In this paper, marginal loss compensation efficiency method was suggested which consider those aspects of the conventional marginal loss allocation method. Also the characteristics of the marginal loss compensation efficiency were analyzed in the appendixes. And simple 2-bus system and IEEE 14 bus system were used to explain these characteristics.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.6
/
pp.453-459
/
2021
The system marginal price of electricity is the amount paid to all the generating units, which is an important decision-making factor for the construction and maintenance of an electrical power unit. In this paper, we suggest a long-term forecasting model for calculating the system marginal price based on prices of natural gas and oil. As most variables used in the analysis are nonstationary time series, the long run relationship among the variables should be examined by cointegration tests. The forecasting model is similar to an error correction model which consists of a long run cointegrating equation and another equation for short run dynamics. To mitigate the robustness issue arising from the relatively small data sample, this study employs various testing and estimating methods. Compared to previous studies, this paper considers multiple fuel prices in the forecasting model of system marginal price, and provides greater emphasis on the robustness of analysis. As none of the cointegrating relations associated with system marginal price, natural gas price and oil price are excluded, three error correction models are estimated. Considering the root mean squared error and mean absolute error, the model based on the cointegrating relation between system marginal price and natural gas price performs best in the out-of-sample forecast.
Kim Dae-Yong;Lee Chan-Joo;Jeong Yun-Won;Park Jong-Bae;Shin Joong-Rin
The Transactions of the Korean Institute of Electrical Engineers A
/
v.55
no.2
/
pp.85-93
/
2006
Since the SMP(System Marginal Price) is a vital factor to the market participants who intend to maximize the their profit and to the ISO(Independent System Operator) who wish to operate the electricity market in a stable sense, the short-term marginal price forecasting should be performed correctly. In an electricity market the short-term market price affects considerably the short-term trading between the market entities. Therefore, the exact forecasting of SMP can influence on the profit of market participants. This paper presents a new methodology for a day-ahead SMP forecasting using ARIMA(Autoregressive Integrated Moving Average) model based on the time-series method. And also the correction algorithm is proposed to minimize the forecasting error in order to improve the efficiency and accuracy of the SMP forecasting. To show the efficiency and effectiveness of the proposed method, the case studies are performed using historical data of SMP in 2004 published by KPX(Korea Power Exchange).
국내 전력시장은 발전기별 비용에 근거한 운영체계를 가지고 있다. 특히 각 발전기의 임시발전가격(IGP, Interim Generating Unit Price)은 발전기별 기동비용 및 무부하비용을 평활화하여 시간대별 가격으로 변환하고 증분비를 더함으로써 산정되고 있으며 그 중에서 가장 높은 임시발전가격이 계통한계가격(SMP, System Marginal Price)으로 결정되고 있으나, 발전비용 최소화를 위하여 단시간 가동되는 소규모 발전기의 발전력 배분으로 계통한계가격의 Spike 현상이 종종 발생하고 있다. 이는 수요증가 및 발전력 부족에 의한 영향보다는 발전비용 최소화 구현과정에서의 현상이므로 이를 해결하기 위한 대안을 검토하고 이에 따른 전력시장의 계통한계가격 영향을 검토하였다.
Lee Ki-Song;Jeong Yun-Won;Shin Joong-Rin;Kim Jin-Ho;Park Jong-Bae
The Transactions of the Korean Institute of Electrical Engineers A
/
v.55
no.8
/
pp.341-350
/
2006
This paper presents a new methodology to draw the components of locational marginal price (LMP) in electricity market. Recently, the changing environments surrounding electricity industries resulted in the unbundled services provided by electricity market players, which may require the new pricing mechanisms based on the LMP. The changed pricing mechanisms will provide the price signals of time and location to the market participants. Most of the existing studies of LMP are based on the Lagrangian multipliers as shadow prices to evaluate the equivalent values of constraints or factors for security, reliability and quality. However, the shadow prices cannot provide enough information for components of LMP. In this paper, therefore, we proposed a new approach that LMP is divided into three components. To do this, we first present the method for shadow prices calculation and then break down LMP into a variety of parts corresponding to the concerned factors. The proposed approach is applied to 5-bus and modified IEEE 14-bus sample system in order to verify its validity.
Kim, Dae-Yong;Lee, Chan-Joo;Lee, Myung-Hwan;Park, Jong-Bae;Shin, Joong-Rin
Proceedings of the KIEE Conference
/
2005.07a
/
pp.819-821
/
2005
Since the System Marginal Price (SMP) is a vital factor to the market entities who intend to maximize the their profit, the short-term marginal price forecasting should be performed correctly. In a electricity market, the short-term trading between the market entities can be generally affected a short-term market price. Therefore, the exact forecasting of SMP can influence on the profit of market participants. This paper presents a methodology of day-ahead SMP foretasting using Autoregressive Integrated Moving Average (ARIMA). To show the efficiency and effectiveness of the proposed method, the numerical studies have been performed using historical data of SMP in 2004.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.