• Title/Summary/Keyword: System Controller

Search Result 11,095, Processing Time 0.042 seconds

Implementation of Adaptive Impedance Controller using Fuzzy Inference (퍼지추론을 이용한 적응 임피던스 제어기의 구현)

  • Lim, Yong-Taek;Kim, Seung-Woo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.423-429
    • /
    • 2001
  • This paper proposes adaptive impedance control algorithm using fuzzy inference when robot contacts with its environments. The characteristics of the adaptive impedance controller is to adapt with parametric uncertainty and nonlinear conditions. The control algorithm is to join impedance controller with fuzzy inference engine. The proposed control method overcomes the problem of impedance controller using gain-tuning algorithm of fuzzy inference engine. We implemented an experimental set-up consisting of environment-generated one-link robot system and DSP system for controller development. We apply the adaptive fuzzy impedance controller to one-link root system, and it shows the good performance on regulating the interactive force in case of contacting with arbitrary environment.

  • PDF

Power Line Communication Heating Control System by LonWorks (LonWorks를 이용한 전력선 통신 난방제어 시스템)

  • Kim, Myung-Ho;Kim, Sun-Boo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1150-1155
    • /
    • 2006
  • In a heating control system, the indoor temperature controller transfers temperature signals inputed from the temperature sensor and the user to the valve controller. The valve controller recieves these signals then the valve controller controls the valve driving motor on two position control and controls the indoor temperature. When setting up a new valve driving motor from a long distance it is necessary to set up a new valve controller. But occasionary, due to construction, it is impossible to wire between the existing valve controller and the new valve controller. In this situation, the new and existing valve controllers can communicate via power line communication. In this paper it is proposed heating control system controls on two position control via power line communication.

  • PDF

Hybrid Control with a Bang-Bang Type Controller (Bang-Bang 형태의 제어기를 갖는 복합제어)

  • 박규식;정형조;조상원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.193-200
    • /
    • 2003
  • This paper presents a hybrid (i.e., integrated passive-active) system for seismic response control of a cable-stayed bridge. Because multiple control devices are operating, a hybrid control system could alleviate some of the restrictions and limitations that exist when each system is acting alone. Lead rubber bearings are used as passive control devices to reduce the earthquake-induced forces in the bridge and hydraulic actuators are used as active control devices to further reduce the bridge responses, especially deck displacements. In the proposed hybrid control system, a linear quadratic Gaussian control algorithm is adopted as a primary controller. In addition, a secondary bang-bang type (i.e., on-off type) controller according to the responses of lead rubber bearings is considered to increase the controller robustness. Numerical simulation results show that control performances of the hybrid control system are superior to those of the passive control system and slightly better than those of the fully active control system. Furthermore, it is verified that the hybrid control system with a bang-bang type controller is more robust for stiffness perturbation than the active controller with μ-synthesis method and there are no signs of instability in the overall system whereas the active control system with linear quadratic Gaussian algorithm shows instabilities in the perturbed system. Therefore, the proposed hybrid protective system could effectively be used to seismically excited cable-stayed bridges.

  • PDF

State- and Output-feedback Adaptive Controller for Pure-feedback Nonlinear Systems using Self-structuring Fuzzy System (완전 궤환 비선형 계통에 대한 자기 구조화 퍼지 시스템을 이용한 상태변수 및 출력 궤환 적응 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Jang, Young-Hak;Ryoo, Young-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1319-1329
    • /
    • 2012
  • Globally stabilizing adaptive fuzzy state- and output-feedback controllers for the fully nonaffine pure-feedback nonlinear system are proposed in this paper. By reformulating the original pure-feedback system to a standard normal form with respect to newly defined state variables, the proposed controllers require no backstepping design procedures. Avoiding backstepping makes the controller structure and stability analysis to be considerably simplified. For the global stabilty of the clossed-loop system, the self-structuring fuzzy system whose memebership functions and fuzzy rules are automatically generated and tuned is adopted. The proposed controllers employ only one fuzzy logic system to approximate unknown nonlinear function, which highlights the simplicity of the proposed adaptive fuzzy controller. Moreover, the output-feedback controller of the considered system proposed in this paper have not been dealt with in any literature yet.

$H_{2}$/$H_{\infty}$ control of active suspension system (능동 현가 시스템을 위한 $H_{2}$/$H_{\infty}$ 제어기 설계)

  • 정우영;김상우;원상철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.888-891
    • /
    • 1996
  • The objective of a mixed H$_{2}$/H$_{\infty}$ controller of active suspension system is to achieve not only the general performance improvement(H$_{2}$) but also the worst case disturbance rejection(H$_{\infty}$). In this paper, a mixed H$_{2}$/H$_{\infty}$ controller for an active suspension system, comparing the performance with that of an H$_{2}$ controller and of an H$_{\infty}$ controller.ler.EX> controller.

  • PDF

Delayed state feedback controller for the stabilization of ordinary systems

  • Lee, Gi-Won;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.947-950
    • /
    • 1988
  • A New type of controller for stabilization of ordinary system in which delayed states are included in feedback loop, is presented. Simple conditions are proposed for the stabilization of ordinary systems with the delayed state feedback controller. Under these conditions, controller gains can be chosen such that desired system performances are satisfied. It is shown that by using this controller the performance and robustness of the resulting closed loop system are much improved compared to the conventional memoryless state feedback controllers.

  • PDF

H$\infty$ Optimal Controller Synthesis for an electromechanical actuator system (전기 기계 구동 시스템에 대한 H$\infty$ 최적 제어기 구성)

  • 김용규;유창근
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1117-1120
    • /
    • 1999
  • In this paper, we design the H$\infty$ optimal controller satisfying robust stability and performance in spite of the plant uncertainty for an electro-mechanical actuator system and analyze the controller in frequency domain. H$\infty$ optimal controller K was designed using iteration algorithm suggested by DOYLE. Using the controller in an electro-mechanical actuator system, the joint with very small coupling rigidity coefficient was used to vary the control parameter. The plant unstructured uncertainty was assumed to be a multiplicative type.

  • PDF

Nonlinear Controller and Observer Design for Ball and Beam (볼빔에 대한 비선형 제어기 및 관측기 설계)

  • 임규만
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.125-128
    • /
    • 2001
  • In this paper, We proposed the nonlinear controller and observer design for a ball and beam system. Unfortunately, for the ball and beam system, the control coefficient is zero whenever the angular velocity or ball position are zero. Therefore, the relative degree of the ball and beam system is not well defined. The presented the nonlinear controller and observer design is based on the approximation input-output feedback linearization. And we verified that the proposed nonlinear controller and observer scheme is the feasible through a computer simulation.

  • PDF

Neuro-Fuzzy Controller Design for Boiler-Turbine System (보일러-터빈 시스템을 위한 뉴로-퍼지 지능제어기 설계)

  • Jo, Kyoung-Wan;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.474-476
    • /
    • 1998
  • In this paper, a multi variable neuro-fuzzy controller for a boiler-turbine system is designed. Two architectures are used. The first consists of boiler-turbine system identification and the second is designing a controller. A generalized backpropagation algorithm is developed and used to train the neuro-fuzzy controller. Designed controller is good tracking property and rejects the input and output disturbances. The results of the proposed design method is verified through simulation.

  • PDF

Controller Development for a Single-Magnet Suspension System Using Nonlinear Feedback Linearization (비선형궤환 선형화 기법을 사용한 단일 자석 자기부상 시스템의 제어기 개발)

  • 진주화;서진헌;김국헌
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.292-299
    • /
    • 1992
  • A nonlinear feedback linearizing control method for an EMS (Electro-Magnetic Suspension) system is proposed. After linearzing the system using the exact linearizing method, conventional linear system control theory has been applied. Robustness properties of the proposed controller with respect to the load variations is also analysed for a single magnet suspension system. Computer simulation is carried out in order to compare the performance of the proposed controller with that of the existing controller designed by using Taylor series expansion around nominal points.

  • PDF