• Title/Summary/Keyword: System Configurations

Search Result 892, Processing Time 0.028 seconds

SysML-based Document Modeling Case (SysML 기반 문서 모델링 사례)

  • Lee, Taekyong;Cha, Jae-Min;Kim, Joon-Young;Salim, Shelly
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.8-15
    • /
    • 2018
  • In traditional Document Based Configuration Management(DBCM) environment, changes in a system's configurations are hard to be reflected to existing engineering documents. This nature of DBCM triggers unconformities of system configurations which could become great risks. Model-based Configuration Management(MBCM) has been introduced to solve the problem of DBCM by managing system's configurations through an unified model. Therefore, it is important to model engineering documents in a general modeling language, down to low-level information items to develop traceability and flexibility of a system's engineering information. So, in the research, to explore the possibility of Model-based Approach(MBA) in the field of configuration management, a development of a systems requirement document model using SysML based Views & Viewpoints concept has been studied.

Constructal study on optimizing the pressure drop of the flow channel configurations with two diameters (형상법칙을 이용한 트리구조의 압력강하 최적화 연구)

  • Cho, Kee-Hyeon;Lee, Jae-Dal;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2652-2657
    • /
    • 2008
  • An analytical study was carried out on the flow resistance of tree-shaped channel flow architectures, based on the principle of the constructal law of evolutionary increase of flow access through the generation of better flowing configurations with two diameters in the square domain. Two types of tree-shaped configurations are optimized. The minimized global flow resistance decreases definitely as the system size, N, increases. And the best channel configurations among the first construct and second construct as a result of regarding pressure drop was selected. We also show that the freedom to morph the design and to increase its performance can be enhanced by using tree-tree configurations with $2^{nd}$ construct when N is greater than 18.

  • PDF

Multichannel Active Control of Honeycomb Trim Panels for Aircrafts (항공기용 하니콤 트림판넬의 다채널 능동제어)

  • Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1252-1261
    • /
    • 2006
  • This paper summarizes theoretical work on the multichannel decentralized feedback control of sound radiation from aircraft trim panels using piezoceramic actuators. The aircraft trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. It is motivated by the localization of reduction in vibration of single channel active trim panels. 12-channel decentralized feedback control systems are investigated in terms of the reduction of noise and vibration for three configurations of sensor actuator pairs. Local coupling of the closely-spaced sensor and actuator pairs was modeled using single degree of freedom systems. The multichannel control system is characterized using the state-space model. For the stability point of view, the relative stability or robustness is evaluated by comparing the real part of eigenvalues of the system matrix for the three configurations. The control performance is also evaluated and compared for the three configurations. It is found that the multichannel system can lead to the globalization of the reduction in vibration and radiated noise. It does not appear to yield a significant improvement in the vibration because of decreased gain margin. However, the reduction in the radiated noise is remarkably improved due to the variation of the vibration pattern with the actuation configurations.

Joint and Link Module Geometric Shapes of Modular Manipulator for Various Joint Configurations (다양한 관절 구성을 위한 모듈라 매니퓰레이터의 관절 및 링크 모듈 형상 도출)

  • Hong, Seonghun;Lee, Woosub;Lee, Hyeongcheol;Kang, Sungchul
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.163-171
    • /
    • 2016
  • A modular manipulator in serial-chain structure usually consists of a series of modularized revolute joint and link modules. The geometric shapes of these modules affect the number of possible configurations of modular manipulator after assembly. Therefore, it is important to design the geometry of the joint and link modules that allow various configurations of the manipulators with minimal set of modules. In this paper, a new 1-DoF(degree of freedom) joint module and simple link modules are designed based on a methodology of joint configurations using a series of Rotational(type-R) and Twist(type-T) joints. Two of the joint modules can be directly connected so that two types of 2-DoFs joints could be assembled without a link module between them. The proposed geometries of joint and link modules expand the possible configurations of assembled modular manipulators compared to existing ones. Modular manipulator system of this research can be a cornerstone of user-centered markets with various solution but low-cost, compared to conventional manipulators of fixed-configurations determined by the provider.

A Review of Electric Ship Propulsion System (선박용 전기추진 장치의 기술동향)

  • 박정태
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.22-25
    • /
    • 2000
  • This paper introduces the ship propulsion system in different aspects. In fact there are many types to accomplish electric propulsion. The latest installations are based on fixed generator speed and motor speed control. The AC motor drive systems with synchroconverter cycloconverter PWM converter are chosen for the ship electric propulsion. The configurations of the ship electric propulsion. The configurationso of the ship electric propulsion system must be considered about following criteria : torque and speed performances redundancy cost harmonics available space and shape. This paper introduces possible configurations of the ship electric propulsion and the major and minor points.

  • PDF

Dimensional synthesis of an Inspection Robot for SG tube-sheet

  • Kuan Zhang;Jizhuang Fan;Tian Xu;Yubin Liu;Zhenming Xing;Biying Xu;Jie Zhao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2718-2731
    • /
    • 2024
  • To ensure the operational safety of nuclear power plants, we present a Quadruped Inspection Robot that can be used for many types of steam generators. Since the Inspection Robot relies on the Holding Modules to grip the tube-sheet, it can be regarded as a hybrid robot with variable configurations, switching between 4-RRR-RR, 3-RRR-RR, and two types of 2-RRR-RR, and the variable configurations bring a great challenge to dimensional synthesis. In this paper, the kinematic model of the Inspection Robot in multiple configurations is established, and the analytical solution is given. The workspace mapping is analyzed by the solution-space, and the workspace of multiple configurations is decomposed into the workspace of 2-RRR to reduce the analysis complexity, and the workspace calculation is simplified by using the envelope rings. The optimization problem of the manipulator is transformed into the calculation of the shortest contraction length of the swing leg. The switching performance of the Inspection Robot is evaluated by stride-length, turning-angle, and workspace overlap-ratio. The performance indexes are classified and transformed based on the proportions and variation trends of dimensional parameters to reduce the number of optimization objective functions, and Pareto optimal solutions are obtained using an intelligent optimization algorithm.

A Reliability Growth Prediction for a One-Shot System Using AMSAA Model (AMSAA 모델을 이용한 일회성 체계의 신뢰도성장 예측)

  • Kim, Myung Soo;Chung, Jae Woo;Lee, Jong Sin
    • Journal of Applied Reliability
    • /
    • v.14 no.4
    • /
    • pp.225-229
    • /
    • 2014
  • A one-shot device is defined as a product, system, weapon, or equipment that can be used only once. After use, the device is destroyed or must undergo extensive rebuild. Determining the reliability of a one-shot device poses a unique challenge to the manufacturers and users due to the destructive nature and costs of the testing. This paper presents a reliability growth prediction for a one-shot system. It is assumed that 1) test duration is discrete(i.e. trials or rounds); 2) trials are statistically independent; 3) the number of failures for a given system configuration is distributed according to a binomial distribution; and 4) the cumulative expected number of failures through any sequence of configurations is given by AMSAA model. When the system development is represented by three configurations and the number of trials and failures during configurations are given, the AMSAA model parameters and reliability at configuration 3 are estimated by using a reliability growth analysis software. Further, if the reliability growth predictions do not meet the target reliability, the sample size of an additional test is determined for achieving the target reliability.

Analysis of system dynamic influences in robotic actuators with variable stiffness

  • Beckerle, Philipp;Wojtusch, Janis;Rinderknecht, Stephan;von Stryk, Oskar
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.711-730
    • /
    • 2014
  • In this paper the system dynamic influences in actuators with variable stiffness as contemporary used in robotics for safety and efficiency reasons are investigated. Therefore, different configurations of serial and parallel elasticities are modeled by dynamic equations and linearized transfer functions. The latter ones are used to identify the characteristic behavior of the different systems and to study the effect of the different elasticities. As such actuation concepts are often used to reach energy-efficient operation, a power consumption analysis of the configurations is performed. From the comparison of this with the system dynamics, strategies to select and control stiffness are derived. Those are based on matching the natural frequencies or antiresonance modes of the actuation system to the frequency of the trajectory. Results show that exclusive serial and parallel elasticity can minimize power consumption when tuning the system to the natural frequencies. Antiresonance modes are an additional possibility for stiffness control in the series elastic setup. Configurations combining both types of elasticities do not provide further advantages regarding power reduction but an input parallel elasticity might enable for more versatile stiffness selection. Yet, design and control effort increase in such solutions. Topologies incorporating output parallel elasticity showed not to be beneficial in the chosen example but might do so in specific applications.

A Study Toward the Determinants off Stratigic Information Partnership (전략적 정보제휴의 결정요인에 관한 연구)

  • 손달호;임준식
    • Korean Management Science Review
    • /
    • v.16 no.2
    • /
    • pp.93-108
    • /
    • 1999
  • There seems to be a renewed interest in interorganizational relationship to search ofr strategic information partnerships. It is particularly noteworthy that no study has yet reported configurations at the level of interorganizational relationships nor compared such configurations across different types of IOS(interorganizational Infromation System). This paper seeks to uncover dominant configurations of interorganizational relationships across the various types of IOS. We integrate relevant theoretical concepts from transaction cost economics, organization theory and political economy to develop a conceptual model of interorganizational relationships based on the fit between information processing needs and information processing capabilities. We empirically uncover a set of hypothesis toward the patterns of interorganizational relationships. Moreover the implications for further research pertaining to the logic and development of configurations were proposed.

  • PDF

Optimized stiffener detailing for shear links in eccentrically braced frames

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.35-50
    • /
    • 2021
  • Eccentrically braced frames (EBFs) are utilized as a lateral resisting system in high seismic zones. Links are the primary source of energy dissipation and they are exposed to high deformation, which may lead to buckling. Web stiffeners were introduced to prevent buckling of shear link. AISC 341 provides the required vertical stiffeners for a shear link. In this study, different stiffener configurations were examined. The main objective is to improve the behavior of short links using different stiffener configurations. Pursuant to this goal, a comprehensive numerical study is conducted using ABAQUS. Shear links with different stiffener configurations were subjected to cyclic loading using loading protocol mandated by AISC 341. The results are compared in terms of energy dissipation and shear capacities and rupture index. The proposed stiffener configurations were further verified with different link length ratios, I-shapes and thickness of stiffener. Based on the results, the stiffener configuration with two vertical and two diagonal stiffeners perpendicular to each other is recommended. The proposed stiffener configuration can increase the shear capacity, energy dissipation capacity and the ratio of energy/weight up to 27%, 38% and 30%, respectively. Detailing of the proposed stiffener configuration is presented.