• Title/Summary/Keyword: System A/c

Search Result 21,662, Processing Time 0.068 seconds

A Study on SoC Platform Design Supporting Dynamic Cooperation between Hardware and Software Modules (하드웨어 및 소프트웨어 모듈간의 동적 협업을 지원하는 SoC 플랫폼 설계에 관한 연구)

  • Lee, Dong-Geon;Kim, Young-Mann;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1446-1459
    • /
    • 2007
  • This paper presents and analyzes a novel technique that makes it possible to improve the performance of low-end embedded systems through SoC(System-on-a-Chip) platform supporting dynamic cooperation between hardware and software modules. Traditional embedded systems with limited hardware resources have the poor capability of carrying out multi-tasking jobs including complex calculations. The proposed SoC platform, which provides dynamic cooperation between hardware and software modules, decomposes a single specific system into tasks for given system requirements. Additionally, we also propose a technique for efficient communication and synchronization between hardware and software tasks in cooperation with each other. Several experiments are conducted to illustrate the application and efficiency of the proposed SoC platform. They show that the proposed SoC platform outperforms the traditional embedded system, where only software tasks run, as the number of memory access is increased and the system become more complex.

  • PDF

Development of COMS DATS C&M S/W (통신해양기상위성 송수신자료전처리시스템의 감시 및 제어 소프트웨어 개발)

  • Kim, Su-Jin;Park, Durk-Jong;Koo, In-Hoi;Ahn, Sang-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.127-140
    • /
    • 2009
  • COMS DATS C&M software is an integrated management system providing control and monitoring functionalities for COMS IDACS (Image Data Acquisition and Control System). DATS C&M S/W consists of a system management module, a control and monitoring module, a data management module, and a trend analysis module. COMS SOC is supposed to operate IDACS as a backup of MSC. Especially, for the backup operation, the control and monitoring module of DATS C&M S/W is designed to support the synchronization of the two IDACS systems. This paper describes design, implementation, and result of development of DATS C&M S/W.

Simulation-Based Analysis of C System in C3 System of Systems Via Machine-Learning Based Abstraction of C2 System (머신러닝 기반의 C2 시스템 추상화를 통한 C3 복합체계에서의 시뮬레이션 기반 통신 시스템 분석)

  • Kang, Bong Gu;Seo, Kyung Min;Kim, Byeong Soo;Kim, Tag Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.61-73
    • /
    • 2018
  • In the defense modeling and simulation, for the detailed analysis of the communication system, many studies have carried out the analysis under the C3 SoS(system of systems) which consists of C2(command and control) and C(communication). However, it requires time and space constraints of the C2 system. To solve this problem, this paper proposes a communication analysis method in the standalone system environment which is combined with the C system after abstracting the C2 system. In the abstraction process, we hypothesize the traffic model and mobility model for C system analysis and learn the parameters in the model based on machine learning. Through the proposed method, it is possible to construct traffic and mobility model with different output according to the battlefield. This case study shows how the process can be applied to the C3 SoS and the enhanced accuracy than the existing method. We expect that it is possible to carry out the efficient communication analysis against many experimental scenarios with various communication parameters.

A Reconfigurable Image Processing SoC Based on LEON 2 Core (LEON 2 코어 기반 재구성 가능 영상처리 SoC 개발)

  • Lee, Bong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1418-1423
    • /
    • 2009
  • This paper describes the design and implementation of a System-on-a-Chip (SoC) for image processing applications to use in wearable/mobile products. The target Soc consists of LEON 2 core, AMBA/APB bus-systems and custom-designed controllers. A new FPGA-based prototyping platform is implemented and used for design and verification of the target SoC. To ensure that the implemented SoC satisfies the required performances, an image processing application is performed.

A Design of Main Control Unit in CRCS/CEDMCS (원자로 제어봉구동장치제어시스템 주제어부 설계)

  • Cheon, Jong-Min;Lee, Jong-Moo;Kim, Choon-Kyoung;Kwon, Soon-Man;Shin, Jong-Ryeol
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.559-561
    • /
    • 2004
  • In this paper, we design two types of Main Control Unit for Control Rod Control System and Control Element Drive Mechanism Control System, respectively, using a domestic Distributed Control System(DCS) developed to localize the instrumentation and control(I&C) system for nuclear power plant(NPP). There are many parts developed by domestic skills and being operated successfully in NPP, but the development of I&C system as an essential part has been slow in progress. We will show the great possibility of developing peculiar Korean I&C system by applying this domestic DCS to nuclear I&C system and confirming its successful operation.

  • PDF

Test Results of Refrigerant R152a in a Mobile Air-Conditioning System

  • Shin, Jeong-Sub;Park, Won-Gu;Kim, Man-Hoe
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.44-50
    • /
    • 2008
  • This study presents test results of a mobile air-conditioning system using a potential alternative refrigerant, R152a. A series of performance tests have been carried out and cycle characteristics such as cooling capacity, energy efficiency ratio, suction and discharge pressures, and temperatures are presented, compared to those for the baseline R134a system. Tests were conducted with evaporation temperature of $5^{\circ}C$, condensation temperature of $45^{\circ}C$, subcooling temperature of $5^{\circ}C$, superheating temperature of $5^{\circ}C$, and compressor speed of 500-1500 rpm. The performance of R152a system with readjustment of an expansion valve showed better than those of R134a. The effect of oil on the pressure drop in the evaporator was also addressed.

Design of Temperature System Using BiCMOS (BiCMOS를 이용한 온도 센서 시스템의 설계)

  • 최진호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.330-334
    • /
    • 2003
  • A Temperature sensor system in which the digital output signal is proportional to the operating temperature is designed. The temperature sensor system is designed by using BiCMOS technology and consists of temperature sensor, voltage-to-frequency converter and counter. The proposed temperature sensor system has error less than $1^{\circ}C$ in the temperature range $-25^{\circ}C$ to $55^{\circ}C$.

Reactive ion Etching Characteristics of 3C-SiC Grown on Si(100) Wafers (Si(100) 기판위에 성장된 3C-SiC의 RIE 특성)

  • Jung, Soo-Yong;Woo, Hyung-Soon;Jin, Dong-Woo;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.892-895
    • /
    • 2003
  • This paper describes on RIE(Reactive Ion Etching) characteristics of 3C-SiC(Silicon Carbide) grown on Si(100) wafers. During RIE of 3C-SiC films in this work, $CHF_3$ gas is used to form of polymer as a side wall for excellent anisotropy etching. From this process, etch rates are obtained a $60{\sim}980{\AA}/min$ by various conditions such as $CHF_3$ gas flux, $O_2$ addition ratio, RF power and electrode distance. Also, approximately $40^{\circ}$ mesa structures are successfully formed at 100 mTorr $CHF_3$ gas flow ratio, 200 W RF power and 30 mm electrode distance. Moreover, vertical side wall is fabricated by anisotropy etching with 50% $O_2$ addition ratio and 25 mm electrode distance. Therefore, RIE of 3C-SiC films using $CHF_3$ could be applicable as fabrication process technology for high-temperature 3C-SiC MEMS applications.

  • PDF

An experimental study on the performance of a window system air-conditioner using R407C and R410B (R407C 및 R410B 적용 창문형 에어컨의 성능에 관한 실험적 연구)

  • Kim, M.H.;Shin, J.S.;Kim, K.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.536-544
    • /
    • 1997
  • This study presents test results of a residential window system air-conditioner using R22 and two potential alternative refrigerants, R407C and R410B. A series of performance tests was performed for the basic and liquid-suction heat exchange cycle in a psychrometric calorimeter test facility. For R407C, the same rotary compressor was used as in the R22 system. However, compressor for the R410B system was modified to provide the similar cooling capacity. The evaporator circuit was changed to get a counter-cross flow heat exchanger to take advantage of zeotropic mixture's temperature glide, and liquid-line suction-line heat exchange cycle was also considered to improve the performance of the system. Test results were compared to those for the basic R22 system.

  • PDF

A Study on the Korean Ondol-System Application in Apartment Houses (공동주택의 한국형 온돌시스템 적용에 관한 연구)

  • Ahn, Min-Hee;Choi, Chang-Ho;Yu, Ki-Hyung;Cho, Dong-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.860-865
    • /
    • 2006
  • The traditional Korean Ondol System that is a radiant floor heating system was made as warm floor and cool indoor temperature. Nowaday, Ondol is developed as the hydronic floor heating system. But unbalance of floor temperature and indoor temperature is occurred bocause strengthen thermal insulation and airtightness in building changes thermal performance. To solve these problems, we examine actual indoor environment of heating system methods in existing apartments and present the new method of floor heating system. The existing heating system made definite indoor temperatures but floor temperatures that is $22^{\circ}C-26^{\circ}C$ was maintained. To solve these problems, we adopted the differential heating system which made warm area and cool area. A differential heating system was made different pitches of heating pipe in single zone and ratio of warm area to cool area is 1 to 2. As a result of experiments, warm area temperature is $40.7^{\circ}C$, cool area temperature is $36.1^{\circ}C$. A difference of temperature between both area is 4K. A distribution of indoor vertical temperature is similar to both warm area and cool area.

  • PDF