Lewy bodies (LBs) are neuronal inclusions that are closely related to Parkinson's disease (PD). The filamentous component of LB from patients with PD contains biochemically altered $\alpha$-synuclein. We have investigated the effect of the oxidized products of catecholamines on the modification of $\alpha$-synuclein. When $\alpha$-synuclein was incubated with the oxidized 3,4-dihydroxyphenylalanine (L-DOPA) or dopamine, the protein was induced to be aggregated. The oxidized catecholamine-mediated $\alpha$-synuclein aggregation was enhanced by copper ion. Radical scavengers, azide and N-acetyl cysteine significantly prevented the oxidized catecholamine-mediated $\alpha$-synuclein aggregation. The results suggest that free radical may play a role in $\alpha$-synuclein aggregation. Exposure of $\alpha$-synuclein to the oxidized products of catecholamines led to the formation of dityrosine. Antioxidant dipeptides carnosine, homocarnosine and anserine significantly protected $\alpha$-synuclein from the aggregation induced by the oxidized products of catecholamines.
Suh, Myung-Duk;Park, Chang-Ha;Kim, Sung-Soo;Kil, Myeng-Og;Lee, Geon-Hee;Johnson, Gail V. W.;Chun, Wan-Joo
Archives of Pharmacal Research
/
v.27
no.8
/
pp.850-856
/
2004
Intraneuronal deposition containing $\alpha$-synuclein is implicated in the pathogenesis of synuclein-opathies including Parkinsons disease (PD). Although it has been demonstrated that cytoplas-mic inclusions of wild type $\alpha$-synuclein are observed in the brain of PD patients and that $\alpha$-synuclein mutations such as A30P and A53T accelerate aggregate formation, the exact mech-anism by which $\alpha$-synuclein forms insoluble aggregates is still controversial. In the present study, to understand the possible involvement of tissue transglutaminase (tTG) in aggregate formation of $\alpha$-synuclein, SH-SY5Y cell lines stably expressing wild type or mutant (A30P or A53T) $\alpha$-synuclein were created and aggregate formation of $\alpha$-synuclein was observed upon activation of tTG. The data demonstrated that $\alpha$-synuclein negligibly interacted with tTG and that activation of tTG did not result in the aggregate formation of $\alpha$-synuclein in SH-SY5Y cells overexpressing either wild type or mutant $\alpha$-synuclein. In addition, $\alpha$-synuclein was not modi-fied by activated tTG in situ. These data suggest that tTG is unlikely to be a contributing factor to the formation of aggregates of $\alpha$-synuclein in a stable cell model.
Synucleinopathies such as Parkinson's disease (PD) are incurable neurodegenerative conditions characterised by the abnormal aggregation of α-synuclein protein in neuronal cells. In PD, fibrillary synuclein aggregation forms Lewy bodies and Lewy neurites in the substantia nigra and cortex on the brain. Dementia with Lewy bodies and multiple system atrophy are also associated with α-synuclein protein abnormalities. α-synuclein is one of three synuclein proteins, and while its precise function is still unknown, one hypothesis posits that α-synuclein propagates from the enteric nervous system through the vagus nerve and into the brain, resulting in synucleinopathy. Studies on synucleinopathies should thus encompass not only the central nervous system but must necessarily include the gut and microbiome. The zebrafish (Danio rerio) is a well-established model for human neuronal pathologies and have been used in studies ranging from genetic models of hereditary disorders to neurotoxin-induced neurodegeneration as well as gut-brain-axis studies. There is significant genetic homology between zebrafish and mammalian vertebrates which is what makes the zebrafish so amenable to modelling human conditions but in the case of synucleinopathies, the zebrafish notably does not possess an α-synuclein homolog. Synuclein orthologs are present in the zebrafish however, and transgenic zebrafish that carry human α-synuclein have been generated. In addition, the zebrafish is a highly advantageous model and ideal replacement for reducing the use of mammalian models. This review discusses the application of the zebrafish as a model for synucleinopathies in efforts to further understand synuclein function and explore therapeutic strategies.
Human ${\alpha}$-synuclein is the major component of the protein aggregates known as Lewy bodies or Lewy neurites, which define the intracellular lesions of Parkinson's disease. Despite extensive efforts, the physiological function of ${\alpha}$-synuclein has not yet been elucidated in detail. As an approach to defining its function, proteins that interacted with ${\alpha}$-synuclein were screened in phage display assays. The SNARE protein vesicle t-SNARE-interacting protein homologous 1B (VTI1B) was identified as an interacting partner. A selective interaction between ${\alpha}$-synuclein and VTI1B was confirmed by coimmunoprecipitation and GST pull-down assays. VTI1B and ${\alpha}$-synuclein were colocalized in N2a neuronal cells, and overexpression of ${\alpha}$-synuclein changed the subcellular localization of VTI1B to be more dispersed throughout the cytosol. Considering the role played by VTI1B, ${\alpha}$-synuclein is likely to modulate vesicle trafficking by interacting with a SNARE complex.
${\alpha}$-Synuclein is abundantly expressed in neuronal tissue, plays an essential role in the pathogenesis of neurodegenerative disorders, and exerts a neuroprotective effect against oxidative stress. Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. In this study, we examined ${\alpha}$-synuclein expression in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury and neuronal cells damaged by glutamate treatment. MCAO surgical operation was performed on male Sprague-Dawley rats, and brain samples were isolated 24 hours after MCAO. We confirmed neurological behavior deficit, infarction area, and histopathological changes following MCAO injury. A proteomic approach and Western blot analysis demonstrated a decrease in ${\alpha}$-synuclein in the cerebral cortices after MCAO injury. Moreover, glutamate treatment induced neuronal cell death and decreased ${\alpha}$-synuclein expression in a hippocampal-derived cell line in a dose-dependent manner. It is known that ${\alpha}$-synuclein regulates neuronal survival, and low levels of ${\alpha}$-synuclein expression result in cytotoxicity. Thus, these results suggest that cerebral ischemic injury leads to a reduction in ${\alpha}$-synuclein and consequently causes serious brain damage.
Eun Ji Kang;Seung Min Jang;Ye Ji Lee;Ye Ji Jeong;You Jin Kim;Seong Su Kang;Eun Hee Ahn
BMB Reports
/
v.56
no.2
/
pp.126-131
/
2023
The abnormal accumulation and aggregation of the misfolded α-synuclein protein is the neuropathological hallmark of all α-synucleinopathies, including Parkinson's disease. The secreted proteins known as netrins (netrin-1, netrin-3, and netrin-4) are related to laminin and have a role in the molecular pathway for axon guidance and cell survival. Interestingly, only netrin-1 is significantly expressed in the substantia nigra (SN) of healthy adult brains and its expression inversely correlates with that of α-synuclein, which prompted us to look into the role of α-synuclein and netrin-1 molecular interaction in the future of dopaminergic neurons. Here, we showed that netrin-1 and α-synuclein directly interacted in pre-formed fibrils (PFFs) generation test, real time binding assay, and co-immunoprecipitation with neurotoxin treated cell lysates. Netrin-1 deficiency appeared to activate the dopaminergic neuronal cell death signal pathway via α-synuclein aggregation and hyperphosphorylation of α-synuclein S129. Taken together, netrin-1 can be a promising therapeutic molecule in Parkinson's disease.
Multiple system atrophy (MSA) is a neurodegenerative disease characterized by presence of α-synuclein-positive inclusions in the cytoplasm of oligodendrocytes. These glial cytoplasmic inclusions (GCIs) are considered an integral part of the pathogenesis of MSA, leading to demyelination and neuronal demise. What is most puzzling in the research fields of GCIs is the origin of α-synuclein aggregates in GCIs, since adult oligodendrocytes do not express high levels of α-synuclein. The most recent leading hypothesis is that GCIs form via transfer and accumulation of α-synuclein from neurons to oligodendrocytes. However, studies regarding this subject are limited due to the absence of proper human cell models, to demonstrate the entry and accumulation of neuronal α-synuclein in human oligodendrocytes. Here, we generated mature human oligodendrocytes that can take up neuronderived α-synuclein and form GCI-like inclusions. Mature human oligodendrocytes are derived from neural stem cells via "oligosphere" formation and then into oligodendrocytes, treating the cells with the proper differentiation factors at each step. In the final cell preparations, oligodendrocytes consist of the majority population, while some astrocytes and unidentified stem cell-like cells were present as well. When these cells were exposed to α-synuclein proteins secreted from neuron-like human neuroblastoma cells, oligodendrocytes developed perinuclear inclusion bodies with α-synuclein immunoreactivity, resembling GCIs, while the stem cell-like cells showed α-synuclein-positive, scattered puncta in the cytoplasm. In conclusion, we have established a human oligodendrocyte model for the study of GCI formation, and the characterization and use of this model might pave the way for understanding the pathogenesis of MSA.
Parkinson's disease (PD) is a neurodegenerative disease caused by selective degeneration of dopaminergic neurons in the substantia nigra. Mutations in ${\alpha}$-synuclein have been causally linked to the pathogenesis of hereditary PD. In addition, it is a major component of Lewy body found in the brains of sporadic cases as well. In the present study, we examined whether overexpression of wild type or PD-related mutant ${\alpha}$-synuclein induces unfolded protein response (UPR) and triggers the known signaling pathway of the resulting endoplasmic reticulum (ER) stress in SH-SY5Y cells. Overexpression of wild type, A30P, and A53T ${\alpha}$-synuclein all induced XBP-1 mRNA splicing, one of the late stage UPR events. However, activation of ER membrane kinases and upregulation of ER or cytoplsmic chaperones were not detected when ${\alpha}$-synuclein was overexpressed. However, basal level of cytoplsmic calcium was elevated in ${\alpha}$-synuclein-expressing cells. Our observation suggests that overexpression of ${\alpha}$-synuclein induces UPR independent of the known ER membrane kinase-mediated signaling pathway and induces ER stress by disturbing calcium homeostasis.
Hyperglycemia is one of the major risk factors for stroke. Hyperglycemia can lead to a more extensive infarct volume, aggravate neuronal damage after cerebral ischemia. ${\alpha}$-Synuclein is especially abundant in neuronal tissue, where it underlies the etiopathology of several neurodegenerative diseases. This study investigated whether hyperglycemic conditions regulate the expression of ${\alpha}$-synuclein in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury. Male Sprague-Dawley rats were treated with streptozotocin (40 mg/kg) via intraperitoneal injection to induce hyperglycemic conditions. MCAO were performed four weeks after streptozotocin injection to induce focal cerebral ischemia, and cerebral cortex tissues were obtained 24 hours after MCAO. We confirmed that MCAO induced neurological functional deficits and cerebral infarction, and these changes were more extensive in diabetic animals compared to non-diabetic animals. Moreover, we identified a decrease in ${\alpha}$-synuclein after MCAO injury. Diabetic animals showed a more serious decrease in ${\alpha}$-synuclein than non-diabetic animals. Western blot and reverse-transcription PCR analyses confirmed more extensive decreases in ${\alpha}$-synuclein expression in MCAO-injured animals with diabetic condition than these of non-diabetic animals. It is accepted that ${\alpha}$-synuclein modulates neuronal cell death and exerts a neuroprotective effect. Thus, the results of this study suggest that hyperglycemic conditions cause more serious brain damage in ischemic brain injuries by decreasing ${\alpha}$-synuclein expression.
Kim, Jung Nam;Kim, Min Kyeong;Cho, Kyu Suk;Choi, Chang Soon;Park, Seung Hwa;Yang, Sung-Il;Joo, So Hyun;Park, Jin Hee;Bahn, Geonho;Shin, Chan Young;Lee, He-Jin;Han, Seol-Heui;Kwon, Kyoung Ja
Biomolecules & Therapeutics
/
v.21
no.3
/
pp.222-228
/
2013
Although the role of ${\alpha}$-synuclein aggregation on Parkinson's disease is relatively well known, the physiological role and the regulatory mechanism governing the expression of ${\alpha}$-synuclein are unclear yet. We recently reported that ${\alpha}$-synuclein is expressed and secreted from cultured astrocytes. In this study, we investigated the effect of valproic acid (VPA), which has been suggested to provide neuroprotection by increasing ${\alpha}$-synuclein in neuron, on ${\alpha}$-synuclein expression in rat primary astrocytes. VPA concentration-dependently increased the protein expression level of ${\alpha}$-synuclein in cultured rat primary astrocytes with concomitant increase in mRNA expression level. Likewise, the level of secreted ${\alpha}$-synuclein was also increased by VPA. VPA increased the phosphorylation of Erk1/2 and JNK and pretreatment of a JNK inhibitor SP600125 prevented the VPA-induced increase in ${\alpha}$-synuclein. Whether the increased ${\alpha}$-synuclein in astrocytes is involved in the reported neuroprotective effects of VPA awaits further investigation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.