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Introduction 

The synucleinopathies are distinct human diseases that share 
one commonality, the deposition of α-synuclein (SNCA) aggre-
gations in the central nervous system (CNS). Synucleinopathies 
which include Parkinson’s disease (PD), Parkinson disease de-
mentia, dementia with Lewy bodies (DLB) and multiple system 
atrophy (MSA) feature chronic neurodegeneration of neurons 
that would have begun years before symptoms arise (Savica et 

al., 2018). PD is the most common synucleinopathy character-
ised by bradykinesia, resting tremor, rigidity, and postural and 
gait impairment – a collection of symptoms described as par-
kinsonism (Parkinson, 2002) – which develop due to the loss 
of dopamine and dopaminergic neurons in the substantia nigra 
parscompacta (SN) in the brain. Another hallmark feature of 
PD is the accumulation of SNCA Lewy bodies (LBs) through-
out the CNS. As more LB deposits accumulate over time, 
parkinsonism symptoms worsen alongside progressive cogni-
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Abstract
Synucleinopathies such as Parkinson’s disease (PD) are incurable neurodegenerative conditions characterised by the abnormal 
aggregation of α-synuclein protein in neuronal cells. In PD, fibrillary synuclein aggregation forms Lewy bodies and Lewy neu-
rites in the substantia nigra and cortex on the brain. Dementia with Lewy bodies and multiple system atrophy are also associ-
ated with α-synuclein protein abnormalities. α-synuclein is one of three synuclein proteins, and while its precise function is still 
unknown, one hypothesis posits that α-synuclein propagates from the enteric nervous system through the vagus nerve and 
into the brain, resulting in synucleinopathy. Studies on synucleinopathies should thus encompass not only the central nervous 
system but must necessarily include the gut and microbiome. The zebrafish (Danio rerio) is a well-established model for human 
neuronal pathologies and have been used in studies ranging from genetic models of hereditary disorders to neurotoxin-induced 
neurodegeneration as well as gut-brain-axis studies. There is significant genetic homology between zebrafish and mammalian 
vertebrates which is what makes the zebrafish so amenable to modelling human conditions but in the case of synucleinopa-
thies, the zebrafish notably does not possess an α-synuclein homolog. Synuclein orthologs are present in the zebrafish however, 
and transgenic zebrafish that carry human α-synuclein have been generated. In addition, the zebrafish is a highly advantageous 
model and ideal replacement for reducing the use of mammalian models. This review discusses the application of the zebrafish 
as a model for synucleinopathies in efforts to further understand synuclein function and explore therapeutic strategies. 
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tive decline which presents as PD dementia. DLB is a type of 
dementia characterised by progressive and severe cognitive im-
pairment along with parkinsonism, but as these symptoms are 
highly reminiscent of Alzheimer’s Disease and PD, respectively, 
DLB is often misdiagnosed. Post-mortem confirmation of DLB 
would reveal widespread LB deposition in the brain. MSA is a 
rare, sporadic neurodegenerative disease that is characterised 
not only by parkinsonism but also autonomic failure that is far 
more severe compared to other synucleinopathies. Detection 
of glial cytoplasmic inclusions in the brain distinguishes MSA 
from other synucleinopathies (Coon & Singer, 2020; Dickson 
et al., 1999). These neurodegenerative diseases are devastating 
for the patients and their families, primarily impacting patients 
when they are in their golden years who then find themselves 
becoming dependent on others for their most basic and even 
private needs (Lennaerts-Kats et al., 2020). As curative treat-
ments are still unavailable, the economic impact of neurodegen-
erative diseases is detrimental on societies that are now bearing 
the cost of long-term palliative care as well as loss of productiv-
ity among family members who are forced into caregiver roles 
(Cantarero-Prieto et al., 2020). 

The pathophysiology of synucleinopathies, in brief, in-
volves the misfolding of SNCA proteins in the cytoplasm of 
neuron cells. The affected cells are either unable or fail to elim-
inate the misfolded proteins and as the misfolded SNCA pro-
teins aggregate into insoluble amyloids and accumulate within 
the cells, functional disruptions occur (Melki, 2015; Rodriguez 
et al., 2018). The regions of the CNS where SNCA aggregates 
proliferate are specific to each disease and the progressive neu-
rodegenerative decline associated with the respective diseases 
follow divergent but predictable sequences impacting numerous 
pathways (Mehra et al., 2019). Such divergent pathologies de-
spite the same originating protein error is possibly explained by 
the prion strain hypothesis, whereby a single SNCA protein se-
quence could potentially misfold into the distinct disease-caus-
ing amyloid structures (Hoppe et al., 2021). The normal func-
tion of SNCA is still the subject of numerous studies (Bendor et 
al., 2013; Kaur & Lee, 2021; Li et al., 2020; Hernández-Vargas et 
al., 2021), with most recognising a duality in the role of SNCA 
as either a physiological neuroprotector of synapses or a patho-
logical inducer of neurodegeneration (Bonini & Giasson, 2005). 

The zebrafish is a common laboratory animal model, par-
ticularly for developmental biology and neuroscience (Kimmel, 
1989; Kimmel, 1993; Stewart et al., 2014). However, the zebraf-
ish does not possess an ortholog to the human SNCA. With 

SNCA playing such a major role in numerous neurodegenera-
tive pathologies, the question arises whether the zebrafish can 
be applied as a model for synucleinopathies. This review seeks 
to catalogue studies reported to date on the use of the zebrafish 
model in studies pertaining to synucleinopathies. A systematic 
search of the literature using Scholar Google, PubMed/Medline, 
and Scopus was done in June – September 2021. The following 
search strategy was used for each of the three bibliographic 
databases: Title, abstract, keywords, or topic: (“synuclein” OR 
“synucleins”) AND (“zebrafish”); (“synucleinopathy” OR “sy-
nucleinopathies”) AND (“zebrafish”); (“Lewy body” OR “Lewy 
bodies”) AND (“zebrafish”); (“aggregates” OR “aggregations”) 
AND (“zebrafish”); (“gut brain axis” OR “gut-brain-axis”) AND 
(“zebrafish”). The search was applied for peer-reviewed articles 
and reviews written in English and published at any time up to 
2021.

Synucleins
The synuclein protein was first described in the nuclei and pre-
synaptic nerve terminals of the Torpedo californica, commonly 
known as the Pacific electric ray (Maroteaux et al., 1988). The 
neuron-specific Torpedo californica synuclein consisted of 143 
amino acids and its gene was expressed only in the nervous 
system (Burré et al., 2018). The cDNA clone encoding T. cali-
fornica synuclein was used to isolate a 140-amino-acid synu-
clein protein in rats. Synuclein homologs were then identified 
in various vertebrates and three distinct synucleins have been 
described, namely SNCA, β-synuclein (SNCB) and γ-synuclein 
(SNCG) (George, 2001). The synucleins are small water-soluble 
proteins that have a highly conserved amino-terminal domain 
that includes a variable number of 11-residue repeats and a 
less-conserved carboxy-terminal domain (George, 2001). Each 
synuclein is between 127 to 140 amino acids in length, sharing 
55% to 62% sequence similarity (Goedert & Spillantini, 2012). 
The protein homology between SNCA and SNCB have a simi-
larity of 62% and are co-localised within presynaptic nerve ter-
minals in the CNS, whereas SNCG is primarily expressed in the 
peripheral nervous system (Goedert, 2001; George, 2001; Jakes 
et al., 1994). 

Human SNCA is located on chromosome 4q21, encoding 
140 amino acids and producing a 14 kDa protein (Bendor et 
al., 2013; Lee & Trojanowski, 2006). The SNCA amino acid 
sequence is divided into 3 regions with each region possessing 
different functions and characteristics (Beyer, 2006). The highly 
conserved N-terminal domain acquires an α-helical structure 
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through binding to phospholipids which suggests SNCA could 
have a role in lipid membrane binding (Leong et al., 2009). The 
central hydrophobic non-beta amyloid component (NAC) re-
gion is responsible for the aggregation process which is essential 
for SNCA toxicity. The third, a strong negative charged acidic 
carboxyl-terminal domain is important for the chaperone-like 
activity of SNCA, which could aid in proper folding of proteins 
and inhibit irreversible aggregation of proteins (Periquet et al., 
2007; Recchia et al., 2004). In normal conditions, SNCA is ex-
pressed abundantly in the presynaptic nerve terminals (Bendor 
et al., 2013; Stefanis, 2012) of the brain striatum, substantia nig-
ra, hippocampus, neocortex, cerebellum and thalamus (Ahmad 
et al., 2007). The normal function of SNCA has been reported 
to be as an essential presynaptic, activity-dependent negative 
regulator of dopamine neurotransmission (Abeliovich et al., 
2000). However, the absence of SNCA does not appear to be 
detrimental, as observed in an inbred mouse strain C57BL/6S 
that had a spontaneous deletion of the SNCA locus (Specht & 
Schoepfer, 2001). 

Under pathological conditions, the aggregated form of 
SNCA is the main constituent of LBs and Lewy neurites (Spill-
antini et al., 1997). It is still up for debate whether the increased 
expression of SNCA is causative in nature or a defence mecha-
nism towards encroaching disease. It remains unclear whether 
the abnormally aggregated SNCA protein confers neuropro-
tection or directs neurotoxicity towards neuronal cells (Luo et 
al., 2007). In PD pathogenesis, SNCA has been implicated in 
ubiquitination (Anderson et al., 2006), phospholipid binding (Jo 
et al., 2000), tyrosine hydroxylase regulation (Perez et al., 2002), 
and chaperone function (Ostrerova et al., 1999). Point muta-
tions of the SNCA gene have been discovered (Appel-Cresswell 
et al., 2013; Conway et al., 1998; Krüger et al., 1998; Lesage et 
al., 2013; Polymeropoulos et al., 1997; Proukakis et al., 2013; 
Zarranz et al., 2004) that lead to early onset forms of α-synucle-
inopathy (Houlden & Singleton, 2012). Two of these mutations 
promote the increased formation of large protofibrils which 
are intermediate aggregates, and induce membrane permea-
bilization via lipid membrane binding which in turn increases 
neurotoxicity (Conway et al., 1998; Nuytemans et al., 2010). As 
reviewed by Ingelsson (Ingelsson, 2016), SNCA’s neurotoxicity 
can compromise cell membrane integrity, synaptic toxicity, im-
pairment in intracellular degradation, mitochondrial toxicity, 
dysfunction of the endoplasmic reticulum, inflammatory re-
sponse, and cell-to-cell propagation.

Alternatively, SNCA expression correlates with neuropro-

tection. In vitro studies showed that neurons expressing SNCA 
after oxidative stress induction were more resistant to apoptotic 
changes compared to non-expressing neurons (Quilty et al., 
2006). This neuroprotective effect was further supported by 
Chong et al. (Choong & Say, 2011), who reported that wild type 
SNCA was able to rescue chronic rotenone-exposed SH-SY5Y 
cells from acute hydrogen peroxide insult. It was also suggested 
that the increase in SNCA released from neurons could trigger 
astrocytes to provide a neuroprotective environment (Lee et al., 
2010). Further studies supported a ‘two hit’ hypothesis whereby 
mild stress to the neurons would initiate a protective up-regula-
tion of SNCA, while an increased stressed environment would 
intensify SNCA accumulation together with ubiquitin which 
is central to proteosome-mediated protein degeneration (Mus-
grove et al., 2011). 

Human SNCB consists of a 134 amino acid protein encod-
ed by the SNCB gene on chromosome 5q35 (Beyer et al., 2011). 
While SNCB and SNCA have similar expression patterns and 
localization in the brain (George, 2001), the structural differ-
ence between the two synucleins is that SNCB lacks the central 
NAC region compared to SNCA (Ahmad et al., 2007). Where 
SNCA has been implicated in neurotoxicity, SNCB has been 
proposed to play a neuroprotective role in impeding further 
aggregation of SNCA protofibrils (Hashimoto et al., 2001; Park 
& Lansbury, 2003) via its non-amyloidogenic properties (Ah-
mad et al., 2007). Increased SNCB protein levels have also been 
reported to reduce SNCA protein aggregation and expression, 
improving motor performance and survival rates of SNCB 
transgenic mice (Fan et al., 2006). 

Lastly, human SNCG, also known as the breast cancer-spe-
cific gene 1 (BCSG1) is located at chromosome 10q23, encoding 
127 amino acids (Lavedan et al., 1998). The SNCG protein 
(SNCG) is mainly expressed at the axons and cell bodies of 
primary sensory neurons, peripheral nervous system motor 
neurons and sympathetic neurons (Ahmad et al., 2007). In 
the brain, SNCG plays a role in dopamine neurotransmission 
(Senior et al., 2008). In amyotrophic lateral sclerosis patients, 
SNCG aggregation has been implicated in the pathogenesis of 
disease (Peters et al., 2015). Overexpression of SNCG has also 
been observed in a wide range of cancers from advanced infil-
trating breast carcinoma, ovarian tumours and cervical cancer 
to liver and lung cancers which suggest its association with 
malignancy, tumour progression and metastasis (Ahmad et al., 
2007; Lavedan et al., 1998; Zou et al., 2012). 
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Zebrafish
The zebrafish (Danio rerio) is a teleost fish from the minnow 
family originating from South Asia which has become estab-
lished as a laboratory animal in addition to being a common 
household pet for aquarists (Aleström et al., 2020; Engeszer et 
al., 2007; Varga, 2018). Teleosts are ray-finned fish that make 
up 96% of all fishes and are believed to have emerged 260 mil-
lion years ago. As teleosts are vertebrates, this makes them a 
more relatable model for human conditions as compared to 
other popular non-mammalian models, namely Drosophila 
melanogaster and Caenorhabditis elegans. Indeed, fishes are the 
oldest and the most diverse class of vertebrates and all extant 
vertebrates are said to be descendants of an ancestral fish (Elgar, 
2004; Volff, 2005). Fish underwent large-scale gene expansion 
early in their evolutionary history (Ravi & Venkatesh, 2018). 
Two rounds of whole genome duplications resulted in four 
times as many genes in vertebrates as there are in invertebrates 
(Dehal & Boore, 2005), thus establishing the incredible gene 
diversity that vertebrates possess. Over time, many of these 
genes disappeared but there were also many that were retained 
in teleosts. The teleosts, especially zebrafish, then experienced 
more recent lineage-specific duplication events that gave rise to 
species-specific duplicate genes (Lu et al., 2012). 

The zebrafish genome has been fully sequenced, revealing 
zebrafish as possessing 26,206 protein-coding genes; for com-
parison, humans are reported as having 19,116 protein-coding 
genes (Howe et al., 2013; Piovesan et al., 2019). Of the human 
genes, 71.4% have at least one zebrafish ortholog, of which 47% 
of such human genes have a one-to-one relationship with a ze-
brafish ortholog. For the human genes that do not have match-
ing zebrafish orthologs, the functions encoded by such genes 
may instead be performed by functionally similar zebrafish 
proteins (Barbazuk et al., 2000; Howe et al., 2013). Genetic se-
quences may have diverged significantly between species (Howe, 
2020; Siddiqui et al., 2016) but conservation of functional 
properties can be uncovered. Hence, while the SNCA gene 
itself is absent in the zebrafish genome, its function very likely 
is conserved in the zebrafish. Zebrafish are already being used 
as animal models for neurodegenerative diseases that include 
synucleinopathies such as PD (Makhija & Jagtap, 2014; Najib 
et al., 2020; Wang et al., 2017) and taupathies in Alzheimer’s 
Disease (Bai & Burton, 2011; Ding et al., 2019). In the case of 
the latter, zebrafish have been shown to possess the mapta and 
maptb duplicate orthologs of the microtubule-associated pro-
tein tau (MAPT) implicated in the formation of neurofibrillary 

tangles in the brains of patients with Alzheimer’s disease (Chen 
et al., 2009a) and observable tau changes were reported in ze-
brafish adults exposed to hypoxia to mimic stroke or cerebral 
ischaemia in human patients (Moussavi Nik et al., 2014). 

The zebrafish laboratory animal model has many advan-
tages compared to the more common vertebrate rodent and 
nonhuman primate models. Zebrafish adults are small in size, 
measuring 4–5 cm in length, and can be housed in aquaculture 
systems designed to hold hundreds or even thousands of ani-
mals within controlled parameters in a single research facility 
(Aleström et al., 2020). Zebrafish achieve sexual maturity by 3 
months of age, breed all year without seasonal variation, and 
are highly fecund, with a fertile pair producing hundreds of 
embryos in a week that can be raised and accurately staged by 
age of development in Petri dishes (Kimmel et al., 1995; Parichy 
et al., 2009). The embryos develop rapidly and are transpar-
ent, allowing for easy stereomicroscopic observation of their 
internal organs and systems during development, and easily 
visualised for in vivo live analyses with reporter transgenes or 
immunolabelled in situ with RNA probes or antibodies (Godoy 
et al., 2020; Kuil et al., 2021; Kumar et al., 2019). In addition, 
the Principles of the 3Rs (Tannenbaum & Bennett, 2015) are 
important considerations to encourage the use of zebrafish as 
an alternative vertebrate model that relatively replace the use of 
mammalian models (Madden et al., 2012). The matter of refine-
ment is also crucial, as in recent years it has become recognised 
that zebrafish are capable of pain perception and discomfort 
(Ohnesorge et al., 2021). Just as one would when using mam-
malian models, suitable analgesia and anaesthesia protocols 
should be approved by the institution’s ethics of animal care and 
use committee if experiments utilise adult zebrafish (Martins 
et al., 2016) while early embryo studies can proceed without 
regulation prior to their free-feeding stage of life (Strähle et al., 
2012).

The zebrafish is a highly tractable organism and experi-
ments done on zebrafish can be as simple as exposing the ani-
mal to compounds that are dissolved in its water column or by 
delivering the compound materials into the fish’s body via injec-
tions or gavage; or can involve forward or reverse genetics via 
mutagenesis studies, transient knockdowns, knockouts (KOs), 
and transgenesis (Kalueff et al., 2014; Stewart et al., 2014; Wyatt 
et al., 2015). In addition to genetic and functional homology, 
zebrafish are homologous for human cells and organs with the 
exception of the lungs, and exhibit behaviours that can be mon-
itored and correlated with human disorders (Flinn et al., 2008). 
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The zebrafish nervous system is simple but well characterised, 
and most importantly, it is a vertebrate nervous system (Blader 
& Strähle, 2000). All life stages of zebrafish can be used to mod-
el various human pathologies, including neuronal conditions 
in order to delineate the mechanisms of disease and to discover 
new therapies (Barnhill et al., 2020; Choi et al., 2021; Fontana et 
al., 2018; Keller & Keller, 2018; Maximino et al., 2010; Stewart et 
al., 2014; Thawkar & Kaur, 2021). 

Zebrafish synucleins
The SNCA is highly conserved gene. A check on the NCBI page 
of SNCA orthologs displays 265 species (NLM, 2016). Notably, 
one vertebrate missing from the list is Danio rerio, the zebraf-
ish. Zebrafish do possess synuclein genes, namely sncb and two 
γ-synuclein paralogs, γ-synuclein A (sncga) and γ-synuclein 
B (sncgb), but the absence of SNCA is intriguing as the gene is 
present in other teleosts (Toni & Cioni, 2015). Table 1 shows the 
similarity between the zebrafish synucleins and SNCAs of sev-
eral other species. Blastn algorithm was performed to compare 
somewhat similar sequences between zebrafish sncb and sncga 
query sequences aligned the subject sequences of other species’ 
SNCA genes. Mostly dissimilar sequences (discontiguous mega-

blast) was used to compare zebrafish sncgb query sequences 
with the other species’ SNCA subject sequences. Protein-protein 
BLAST (blastp) was used for all zebrafish synuclein amino acid 
query sequences aligned with subject sequences of the other 
species’ SNCA proteins.

When first identified, zebrafish Sncb was described as be-
ing 70% identical and 82% similar with human SNCB (Sun & 
Gitler, 2008). Another report placed the similarities for zSyn-β, 
zSyn-γ1, and zSyn-γ2 proteins at 69%, 47%, and 50% identity 
to human SNCB and SNCG, respectively; these three synuclein 
genes were then named sncb, sncga and sncgb according to stan-
dard nomenclature conventions (Chen et al., 2009b). Whole-
mount in situ hybridization (WISH) with RNA probes showed 
sncb is the earliest expressed of the three zebrafish synuclein 
genes. From the 8-somite to 16-somite stage, sncb was detected 
only in the trigeminal placode. sncb expression then expanded 
to the ventral diencephalon, olfactory placode, ventral teg-
mentum, and spinal cord neurons before eventually becoming 
restricted to the brain and retina by 45 hours post fertilisation 
(hpf) (Sun & Gitler, 2008). 

Meanwhile, synteny inference suggested that sncga and 
sncgb were paralogs derived from duplication of the same an-

Table 1. BLAST (Altschul et al., 1990) of nucleotide mRNA and amino acid percent identity between zebrafish synucleins and 
α-synucleins across selected species: human, nonhuman primate, rodents, and a teleost fish
Zebrafish 
Danio rerio 

Human 
Homo sapiens

Rhesus monkey 
Macaca mulatta

Rat 
Rattus norvegicus

Mouse 
Mus musculus

Common carp 
Cyprinus carpio

SNCA
NM_000345

Predicted SNCA transcript 
variant X1

XM_015138783

Snca
NM_019169

Snca
NM_001042451

SNCA
GQ169720.1

sncb
NM_200969

67.14 67.57 66.97 66.97 65.17

sncga
NM_001017567

74.31 74.31 76.39 75.69 74.42

sncgb
NM_001020652

70.79 70.79 72.07 72.07 71.08

SNCA
NP_000336

SNCA isoform 1
XP_014994269

Snca
NP_062042

Snca
NP_001035916

SNCA
ACS68572.1

scnb
NP_957263

54.05 53.38 54.73 54.73 51.54

sncga
NP_001017567

58.33 57.29 58.33 58.33 59.34

sncgb
NP_001018488

63.54 62.50 58.77 58.77 63.04

References Linnertz et al., 2009; 
Spillantini et al., 1995 

Chu & Kordower, 2007; 
Shi et al., 2017

Jiang et al., 2014; 
Wang et al., 2016

Musgrove et al., 2014; 
Touchman et al., 2001

Vaccaro et al., 2015 

sncb, β-synuclein; sncga, γ-synuclein A; sncgb, γ-synuclein B; SNCA, α-synuclein.
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cestral locus that diverged to become the human SNCG (Mila-
nese et al., 2012). sncga expression was not detected during early 
embryogenesis but from 26 hpf onwards, sncga could be detect-
ed in the spinal cord and hindbrain neurons. By 3 days post fer-
tilisation (dpf) sncga expression was restricted to the brain and 
retina. As for sncgb, it was seen to be expressed within the no-
tochord early in embryogenesis but not elsewhere. After 2 dpf, 
sncgb transcripts were not detectable by WISH (Sun & Gitler, 
2008) and in temporal expression RT-PCR profiles, the intensity 
of sncgb bands were weaker compared to the other synucleins. 
In adult tissues, moderate sncgb mRNA expression was detected 
in the testis, kidney and brain, whereas high levels of both sncb 
and sncga were seen most abundantly in the brain followed by 
the eyes (Chen et al., 2009b). Indeed, all three zebrafish synu-
cleins were detected in the adult brain, wherein sncga had the 
strongest expression and sncgb the weakest. sncb and sncga were 
distributed throughout the gray matter of the brain and spinal 
cord, with sncb being more prominent rostrally and sncga more 
prominently expressed caudally. In the brain, both sncb and 
sncga were shown to be co-expressed in catecholaminergic neu-
rons (Milanese et al., 2012) which comprise the dopaminergic 
system and noradrenergic system. It is the dopaminergic system 
that is so severely compromised in PD (Braak & Braak, 2000; 
Dauer & Przedborski, 2003) and it is important to note that ze-
brafish dopaminergic neurons have been very well mapped and 
are functionally comparable to the human’s (Du et al., 2016; Ma, 
2003; Matsui & Sugie, 2017; Xi et al., 2011). A stable transgenic 
line, Tg (sncga:GFP) generated by Tol2-mediated transgenesis 
(Asakawa & Kawakami, 2009) produced embryos with green 
fluorescent protein (GFP) signal distribution that recapitulated 
the spatial expression pattern of sncga revealed by WISH (Chen 
et al., 2009b).

Transient knockdown of a specific gene function during 
zebrafish development can be achieved by delivering antisense 
morpholino oligonucleotides (MO) into the fertilised egg. In 
zebrafish embryo morphants, gene expression begins to recover 
as the embryos grow and the cellular MO concentration dilutes 
(Moulton, 2017), allowing for an observation window of gene 
inhibition for the first 3 to 4 days of embryogenesis (Bedell et al., 
2011; Bill et al., 2009; Corey & Abrams, 2001). Having demon-
strated that sncb and sncga were expressed in the dopaminergic 
neurons, Milanese et al. (2012) targeted the two synucleins for 
MO knockdown. Inhibition of sncb and sncga did not result in 
lethality or systemic defect, and the morphants’ CNS appeared 
normal (Milanese et al., 2012). However, the loss of sncb and 

sncga did impair motor function, with the morphants exhibit-
ing obvious hypokinesia between 3 and 4 dpf which resolved 
to normal spontaneous motor activity by 5 dpf for the single 
knockdown morphants, while double knockdown morphants 
took longer to recover. Low dopamine levels were detected in 
all morphants. Collectively the results suggested sncb and sncga 
are not required for CNS morphologic development but are 
necessary for early development or differentiation of dopamine 
neurons (Milanese et al., 2012). Very importantly, Milanese 
et al. (2012) demonstrated the hypokinetic phenotype seen in 
sncb and sncga morphants could be rescued by human SNCA 
mRNA. This would support the idea of functional redundancy 
between the synuclein genes in zebrafish and explain the loss of 
SNCA from the zebrafish genome (Sager et al., 2010).

As sncb has been identified as the clear ortholog for human 
SNCB, that leaves sncga as the presumptive putative functional 
homolog for SNCA in zebrafish. Notably, the zebrafish sncga 
sequence has been reported to contain N-terminal repeats and 
hydrophobic regions that are similar to SNCA (Milanese et al., 
2012). In one study, Sncga (referred to as γ-1 by the authors) 
was firstly shown to form fibrils similar to that seen with hu-
man SNCA in vitro, and formed intracellular γ1 aggregates 
in vivo when γ-1 was over-expressed (Lulla et al., 2016). The 
authors subsequently used dithiocarbamate pesticide ziram to 
induce neurotoxicity and describe synuclein involvement in 
zebrafish embryos. A previous in vitro study had shown ziram 
to be selectively toxic to dopaminergic neuron cells in primary 
mesencephalic culture derived from rats, resulting in increased 
SNCA expression (Chou et al., 2008). In the zebrafish study, 
γ-1 was shown to be crucial for ziram neurotoxicity as demon-
strated by γ-1 MO knockdown embryos being quite protected 
against ziram-induced damage to telencephalic and diencephal-
ic aminergic neurons, and the use of a molecular tweezer (MT) 
to disrupt SNCA aggregation being effective against γ-1 as well 
(Lulla et al., 2016). Taken together, these observations neatly 
demonstrate the Sncga-like neurotoxic role for zebrafish sncga.

The role for SNCB in synucleinopathies is purportedly one 
of modulation and possible neuroprotection (Fan et al., 2006; 
Sargent et al., 2018) leading to significant research investment 
for assessment of therapeutic applications for SNCB (Hashimoto 
& Spada, 2012; Hashimoto et al., 2001; Park & Lansbury, 2003, 
Shaltiel-Karyo et al., 2010). In the zebrafish, sncb upregulation 
and sncb aggregation were seen following knockdown of the 
leucine-rich repeat kinase 2 (lrrk2) gene. In the lrrk2 morphant 
embryos, sncb aggregated in the diencephalon, midbrain, hind-
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brain, post optic commissure, and very widely in the hindbrain. 
Zebrafish lrrk2 morphants also had significant developmental 
perturbation and neuron loss, including of dopaminergic neu-
rons (Prabhudesai et al., 2016). LRRK2 mutations are autoso-
mal dominant and are the most common cause of familial PD 
(Greggio & Cookson, 2009). The interaction between LRRK2 
and SNCA and their links to synucleinopathies have been the 
subject of much research (Gorostidi et al., 2012; O’Hara et al., 
2020; Sen & West, 2009; Taymans & Cookson, 2010), and it 
should be noted that in the Prabhudesai study, SNCB was used 
as the substitute equivalent to SNCA and was detected by West-
ern blot by using rabbit polyclonal antibody for SNCB (Prabhu-
desai et al., 2016). Nonetheless, the zebrafish findings were in-
triguing as SNCB aggregation is not a common report; despite 
sharing significant sequence similarity with SNCA, SNCB is re-
portedly resistant to aggregation (Allison et al., 2014). A current 
search for LRRK2 and SNCB did not unearth any published 
articles.

Increased sncb expression was also reported in zebrafish 
embryo morphants of phospholipase A2 group VI (pla2g6) 
(Sánchez et al., 2018), the ortholog of PLA2G6 which has been 
associated with neurodegenerative diseases (Gregory et al., 
2017; Kurian et al., 2008). Sánchez et al. (2018) were inter-
ested in the synucleins as links between PLA2G6 and SNCA 
have been reported in other animal models; in the absence of 
SNCA in the zebrafish, sncb was picked for CNS analysis in 
pla2g6 morphants due to it being expressed in the presynaptic 
terminals. The increase in sncb expression and distribution in 
the brain in pla2g6-deficient embryos was thus correlated with 
SNCA elevation in PLA2G6 patients and Pla2g6-KO mice, with 
the implication that presynaptic synuclein aggregation may 
be a factor in the pathogenesis of PLA2G6 neurodegeneration 
(Sánchez et al., 2018). A more recent study into the neurotox-
icity and teratogenic risks of silica nanoparticles in the aquatic 
environment assayed sncb as one of several neurodevelopment, 
autophagy and parkinsonism-related genes. The group re-
ported no apparent changes to sncb mRNA levels in embryos 
immersed in silica nanoparticle solutions (Li et al., 2021). From 
their discussion, it appeared that the group was conflating sncb 
and SNCA; perhaps sncga would have been the better gene to 
assess possible parkinsonism risk in the silica nanoparticle-ex-
posed embryos.

Zebrafish α-synuclein (SNCA)?
Interestingly, studies reporting endogenous SNCA in zebraf-

ish have been published. Khotimah et al. (2015a, 2015b) used 
rotenone to induce neurotoxicity and synuclein aggregation in 
adult zebrafish (Khotimah et al., 2015a; Khotimah et al., 2015b). 
Rotenone is a natural compound isolated from the seeds, stems 
or roots of several plant species and has been commonly used 
as an insecticide, pesticide and piscicide. Rotenone directly in-
hibits mitochondrial complex I of the electron transport chain 
and selectively damages dopaminergic neurons in the substan-
tia nigra, leading to the progressive mitochondrial dysfunction 
and increased oxidative stress associated with PD, and its cor-
relation with human PD cases is well documented (Johnson & 
Bobrovskaya, 2015; Tanner et al., 2011). Importantly, rotenone 
has long been used to induce parkinsonism in animal models 
(Innos & Hickey, 2021; Lv et al., 2019; Ünal et al., 2019). In the 
Khotimah et al. (2015a, 2015b) studies, SNCA expression was 
detected by immunohistochemistry, whereby Western blots 
showed positive SNCA protein signals of approximately 14–16 
kDa in untreated controls while rotenone-induced zebrafish 
showed high expression of aggregated SNCA proteins of more 
than 250 kDa (Khotimah et al., 2015a; Khotimah et al., 2015b). 
Das et al. (2020) also reported SNCA protein detection by West-
ern blot (Das et al., 2020) in a study aimed at assessing the neu-
rodegenerative effects of benzo[a]pyrene (B[a]P), a polycyclic 
aromatic hydrocarbon often contained in industrial effluents 
(Chepelev et al., 2015; Das et al., 2020). Adult zebrafish exposed 
to the neurotoxicant exhibited impaired locomotive function 
evocative of parkinsonism that is associated with dopaminer-
gic neuron or dopamine loss, alongside significant increase in 
SNCA protein as detected by Western blot (Das et al., 2020). It 
could be presumed that both these research groups had used 
commercial antibodies against mammalian SNCA that had suf-
ficient homology to target either zebrafish Sncb or Sncga (Vaz et 
al., 2018; Yurtsever et al., 2020). 

Hu et al. (2017) tested the neurotoxicity risks of titanium 
dioxide nanoparticles in zebrafish embryos and reported in-
creases in pink1, parkin, snca and uchl1 expression levels (Hu et 
al., 2017); these are genes implicated with the formation of LBs 
and parkinsonism. Titanium dioxide nanoparticle neurotoxicity 
was not fatal but did cause delayed hatching and morphological 
deformities. The nanoparticles accumulated in larval brains, 
resulting in reactive oxygen species (ROS) generation and hy-
pothalamus cell death as well as dopaminergic neuron loss, all 
which greatly incriminated titanium dioxide nanoparticles as 
risk factors for PD (Hu et al., 2017). The upregulation of snca 
in response to the nanoparticle neurotoxicity would have been 
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in line with the observation of parkinsonism in vivo if not for 
the fact that zebrafish do not possess the gene. In the same vein, 
Zhu et al. (2020) reported PD-like symptoms in zebrafish larvae 
following exposure to Fenvalerate, a type of pyrethroid used as 
an insecticide, and evaluated pink1, parkin, snca and uchl1 tran-
scription by qRT-PCR (Zhu et al., 2020). Fenvalerate exposure 
led to increased mortality, abnormalities in morphology and 
locomotor behaviour in surviving larvae, dopaminergic neuron 
loss and significant upregulation in pink1, parkin and uchl1; but 
no significant difference in snca expression in exposed larvae 
compared to unexposed controls. Intriguingly, the published 
primers designed for snca (Zhu et al., 2020) were in fact target-
ing NM_001113636.2, which is the reference sequence for sy-
nuclein, alpha interacting protein (sncaip) mRNA, an ortholog of 
human SNCAIP which encodes synphilin-1, a neuronal protein 
that interacts with SNCA and modulates SNCA aggregation 
(Engelender et al., 1999; Engelender et al., 2000). Synphilin-1 
has also been shown to be one of the protein components in LBs 
(Wakabayashi et al., 2007) and synphilin-1 mutations have been 
described in sporadic PD (Marx et al., 2003). Studies are ongo-
ing to understand the possibly cytoprotective role of synphilin-1 
in PD pathogenesis (Liu et al., 2016; Shishido et al., 2019; Smith 
et al., 2010; Tanaka et al., 2004; Hernández-Vargas et al., 2011) 
and the inadvertent reporting of zebrafish sncaip/synphilin-1 
and its seeming non-response to a neurotoxin (Zhu et al., 2020) 
offers interesting prospects for further investigations into what 
role synphilin-1 has in the absence of SNCA. 

Meanwhile, Keatinge et al. (2015) utilised the zebrafish 
model precisely because it lacks SNCA. Glucocerebrosidase 
1 (GBA1) mutations are the cause of Gaucher’s Disease, an 
autosomal recessive lysosomal disorder (Hruska et al., 2008). 
Keatinge’s group was focused on understanding the mecha-
nisms of GBA1 mutation in contributing to increased risk of PD 
in heterozygous GBA1+/− carriers, independent of SNCA toxici-
ty (Keatinge et al., 2015). A gba1−/− zebrafish line was generated, 
and juvenile homozygous and heterozygous mutants of the 
line showed phenotypes associated with Gaucher’s Disease but 
gba1−/− zebrafish did not survive past 14 weeks post fertilization 
(wpf). Without any SNCA influence, dopaminergic neuron 
degeneration was clearly detected in gba1−/− mutants by 12 wpf. 
Notably both Sncb and Sncga protein levels were markedly re-
duced in the gba1−/− brains, likely as a consequence of the loss 
of neuron cells. This study introduced a niche application for 
the zebrafish in further studies of PD-related pathophysiology 
unrelated to α-synucleinopathy. 

Humanized zebrafish
The high level of genomic conservation between humans and 
zebrafish allows for the expression of human genes in zebrafish 
(Barbereau et al., 2021; Cornet et al., 2018, Slijkerman et al., 
2018). Of specific relevance to this review, transgenesis of hu-
man SNCA in zebrafish benefits from of the absence of endoge-
nous SNCA wherein findings would be reflective of the human 
SNCA rather than complicated by an endogenous protein 
ortholog, as is seen in transgenic SNCA mammalian models 
(Visanji et al., 2016). 

The first published synucleinopathy study using a human-
ized zebrafish model was by Prabhudesai et al. (2012) who gen-
erated a transgenic zebrafish model of SNCA toxicity (α-syn-ZF) 
exogenously expressing SNCA fused with DsRed as the reporter 
gene with HuC neuronal promoter and a T2A peptide inserted 
between the SNCA and DsRed sequence (HuC-α-syn-T2A-
DsRed). The T2A peptide would be cleaved post-translationally 
to release SNCA and DsRed in neurons. Embryos injected with 
the HuC-α-syn-T2A-DsRed construct exhibited DsRed fluores-
cence in neurons beginning from 12 hpf but also suffered severe 
morphologic deformities and most were dead by 240 hpf. Se-
vere phenotype and lethality were also seen in embryos injected 
with HuC-α-syn construct without T2A and DsRed, but not in 
control embryos expressing HuC-T2A-DsRed, thus implicating 
SNCA as the cause of toxicity. Additionally, SNCA aggregates 
were detected in the neurons of α-syn-ZF larvae. However, the 
SNCA aggregation was prevented when the α-syn-ZF larvae 
were treated with a novel MT capable of inhibiting the assembly 
and toxicity of amyloidogenic proteins, thus providing valida-
tion for the MT as a potential treatment option for synucleinop-
athy (Prabhudesai et al., 2012). 

O’Donnell et al. (2014) injected their αSyn-2A-GFP trans-
gene construct into single-cell embryos to overexpress human 
SNCA in the Rohon-Beard neurons, which are peripheral 
mechanosensory neurons located in the dorsal spinal cord of 
fish and amphibians. Use of a viral 2A system (Luke & Ryan, 
2018; Provost et al., 2007) offered a brighter reporter expression 
than the earlier α-syn-ZF transgenic (Prabhudesai et al., 2012). 
Morphology and survival of this GFP α-syn transgenic was also 
improved compared to the α-syn-ZF model, at least when the 
CREST3 sensory neuron (Uemura et al., 2005) enhancer rather 
than HuC promoter was used to drive the GFP SNCA expres-
sion. Here, SNCA aggregation and axon degeneration followed 
by cell death were seen in the neurons of embryos expressing 
human SNCA and GFP, but not in controls expressing GFP 
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alone (O’Donnell et al., 2014). O’Donnell et al. (2014) were ob-
serving the pathological effects of accumulated SNCA on axons 
(Tagliaferro & Burke, 2016) as well as on the rate of Wallerian 
degeneration (Conforti et al., 2014; Rotshenker, 2011) via time-
lapse confocal microscopy imaging after axonal injury and 
determined that Wallerian degeneration occurred in the same 
manner in SNCA-expressing axons and wildtype axons. The 
axon-protective protein Wallerian degeneration slow (WldS) 
(Lingor et al., 2012) was shown to afford some protection 
against SNCA toxicity but could not prevent neuron cell death. 
However, the transcriptional coactivator PGC-1α (Northam & 
LeMoine, 2019) was able to protect against both neuron demise 
and axonopathy (O’Donnell et al., 2014), further validating 
PGC-1α as a therapeutic target in treating synucleinopathies 
(Mudò et al., 2012; Ng et al., 2017; Yang et al., 2020; Zheng et al., 
2010) and establishing this model for other therapeutic target 
screens. Matsui & Matsui (2017) also generated a GFP reporter 
human SNCA transgenic line but noted that the SNCA expres-
sion was weak and the fish did not exhibit any SNCA inclusion 
bodies even after progressing to the advanced age of 18 months. 
The authors subsequently delivered injections of human SNCA 
fibrils into the cerebrospinal fluid (CSF) of adult fish. The re-
sult of this xenograft was a significant accumulation of human 
SNCA and SNCA inclusions in the brains of SNCA transgenics, 
which were not seen in the brains of wildtype zebrafish that un-
derwent the same procedure (Matsui & Matsui, 2017). Notably, 
the SNCA in the inclusions distributed throughout the brain 
had undergone post-translational modification phosphoryla-
tion at residue Serine-129 (S129). Phosphorylated SNCA S129 
has been implicated in the pathological misfolding of SNCA 
(Anderson et al., 2006; Oueslati et al., 2013) and earmarked as 
a biomarker for diagnosis of synucleinopathies, including PD 
(Cariulo et al., 2019). The main achievement of the CSF injec-
tions of SNCA fibrils is this study was the demonstration of pri-
on-like propagation of misfolded SNCA, although the authors 
acknowledged that the brain inclusions seen might have also in-
cluded endogenous zebrafish synuclein. Prion-like propagation 
(Tyson et al., 2016) is currently the focus of much intense study 
to detail the processes and to strategize potential approaches 
to limit or even stop the loop of misfolded SNCA aggregating 
and seeding more and more neuron cells (Goedert et al., 2016; 
Oueslati et al., 2014; Ugalde et al., 2016). The zebrafish can now 
be added to the stable of animal models for SNCA propagation 
studies (Bernis et al., 2015). 

More recently, Van Laar et al. (2020) constructed a novel 

transgenic zebrafish using the mCherry reporter and viral 2A 
system, Tg (UAS:hsa.SNCA-2A-nls-mCherry) that co-expressed 
human SNCA in the ventral diencephalic dopaminergic neu-
rons that are homologous to the mammalian nigrostriatal sys-
tem. The human wildtype SNCA was expressed at low levels as 
to avoid neurodegeneration and dopaminergic neuronal loss 
or neurobehavioral abnormalities in the larvae (Van Laar et al., 
2020). The establishment of this transgenic line generated on 
the transparent Casper (roy−/−; nacre−/−) background (White et 
al., 2008) allowed for intravital confocal microscopy (Usmani & 
Mempel, 2021; van Ham et al., 2014) of the whole CNS in the 
living zebrafish model which would not have been possible in a 
rodent model. A second transgenic line Tg (UAS:roGFP2-Orp1) 
was developed to express a ratiometric hydrogen peroxide 
(H2O2) biosensor (Nietzel et al., 2019; Kostyuk et al., 2020) on 
a Casper background which was then crossed with the SNCA 
transgenics to allow for live in vivo measurement of cytoplasmic 
H2O2 flux in dopaminergic neurons. H2O2 is an endogenous 
ROS that has been implicated either as a cause of SNCA aggre-
gation or as a consequence of SNCA accumulation (Lehtonen 
et al., 2019; Xu et al., 2015). Following acute exposures to either 
MPTP or rotenone, increased cytoplasmic H2O2 flux was ob-
served in the dopaminergic neurons of the SNCA transgenics. 
Additionally, upon exposure to H2O2, the transgenics’ dopa-
minergic neurons failed to compensate for redox perturbation, 
reflecting the ROS impact on mitochondrial dysfunction and 
cellular dysregulation in PD (Dias et al., 2013; Milanese et al., 
2018). These transgenics along with an earlier one generated by 
the same group (Dukes et al., 2016) offer intriguing modalities 
for in vivo imaging of synucleinopathies and PD-related CNS 
disruptions in a vertebrate model.

Meanwhile, Weston et al. (2021) reported their transgenic 
line which transiently expressed human SNCA with a C-ter-
minal GFP tag (SNCA-GFP) within motor neurons. Their 
transgenic larvae allowed for tracking of GFP-tagged human 
wildtype SNCA and A53T point mutation SNCA (Hoenen et 
al., 2016; Li et al., 2002) in neurons and presynaptic terminals 
(Weston et al., 2021). The group utilised fluorescence recovery 
after photobleaching (FRAP) imaging (Ishikawa-Ankerhold et 
al., 2012) to measure and quantify SNCA mobility in presynap-
tic neurons, using this method to differentiate between aggre-
gated proteins with limited mobility and non-aggregated SNCA 
that diffuse freely. This group established the zebrafish larval 
nervous system as a viable platform to optically study normal 
and mutant SNCA function as well as SNCA aggregations, and 
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even detected nitrated SNCA species within the presynaptic 
terminals (Benner et al., 2008; Chavarría & Souza, 2013) in ad-
dition to demonstrating that zebrafish Polo-like kinase (PLK) 
(Inglis et al., 2009; Mbefo et al., 2010) could phosphorylate 
human SNCA at S129 in zebrafish neurons. The entire experi-
ment was an elegant use of the zebrafish model to decipher the 

mechanisms of human SNCA aggregation and open up avenues 
for further investigations. Table 2 summarises the zebrafish sy-
nuclein models that have been discussed. 

α-Synuclein (SNCA) and the gut-brain-axis
In humans, SNCA is present within the enteric nervous system 

Table 2. Summary of zebrafish synuclein models that have been published
Synuclein Methodology Life stage Observations References

Endogenous synuclein

Tg (sncga:GFP) Tg (sncga:GFP) Embryos Transgenic GFP expression at 3 dpf in spinal cord, habenula, 
hindbrain, midbrain, eyes, trigeminal ganglion, vagal ganglion, 
and posterior lateral line ganglion. Habenula expression is 
asymmetric, larger GFP domain in left habenula than in right 
habenula. 

Chen et al., 2009b

β-synuclein (sncb)
γ-1 synuclein (sncga)

MO knockdown 
(β MO, γ1 MO, 
β + γ1 MO)

Embryos, 
larvae

Slight reduction in slc6a3 (dopamine transporter, dat)-positive 
neurons in double β + γ1 morphants at 2 dpf. Hypokinesia 
between 3–5 dpf, reduced dopamine levels at 7 dpf. 
Hypokinesia rescued by human human α-synuclein. 

Milanese et al., 2012

β-synuclein lrrk2 MO knockdown Embryos β-synuclein aggregation in lrrk2 morphant brain at 3 dpf. Prabhudesai et al., 2016

γ-1 synuclein (sncga) γ-1 synuclein MO Embryos Morphants protected from ziram dithiocarbamate toxicity. Lulla et al., 2016

γ-1 synuclein (sncga) γ1-synuclein 
overexpression in 
neurons via HuC-ZFγ1-
T2A-DsRed injection at 
single-cell stage

Embryos Malformation, reduced survival, intracytoplasmic aggregation in 
neurons at 2 dpf.

Lulla et al., 2016

α-synuclein 
(presumably sncb 
or sncga)

Rotenone (5 μg/L) 
immersion for 28 days

Adults Western Blot detection of α-synuclein aggregates in the brain. 
Hypokinesia, decreased dopamine levels, increased apoptosis, 
increased α-synuclein, Caspase-3, Caspase-9 expression and 
decreased BDNF expression in midbrain. 

Khotimah et al., 2015a; 
Khotimah et al., 2015b

α-synuclein 
(presumably 
other synuclein 
ortholog)

Environmental toxins Larvae, adults Increased α-synuclein in embryos exposed to titanium dioxide 
nanoparticles. 

PD-like symptoms in zebrafish larvae but no increase in α-synuclein 
exposed to Fenvalerate type II pyrethroids.

Increased α-synuclein in adults exposed to benzo[a]pyrene.

Hu et al., 2017
Zhu et al., 2020
Das et al., 2020

Exogeneous α-synuclein transgene

Human α-syn, SNCA 
(HuC-α-syn-T2A-
dsRed) transgenic

SNCA fused with DsRed 
reporter gene with HuC 
neuronal promoter and 
T2A peptide inserted 
between SNCA and 
DsRed sequence. 
Transgene injected into 
embryos at one-cell 
stage.

Embryos HuC promoter used to drive α-syn DsRed expression in neurons. 
Embryos have morphological deformities, marked increase in 
neuron apoptosis as early as 24 hpf, aggregated α-syn in DsRed-
positive neurons. Almost all dead by 240 hpf. 

Prabhudesai et al., 2012

Human α-synuclein, 
SNCA (aSyn-2A-
GFP) transgenic

CREST3:Gal4:UAS:aSyn-2A-
GFP transgene injected 
into wildtype embryos 
at one-cell stage

Embryos CREST3 enhancer used to drive expression in peripheral sensory 
neurons. Most embryos morphologically normal. Human 
α-syn GFP expression in Rohon-Beard neurons. α-synuclein 
aggregation by 2 dpf, reduced mitochondrial transport in axons 
at 2 dpf, axonopathy (axon swelling, beading, fragmentation, 
degeneration) by 3 dpf. 

O’Donnell et al., 2014
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(ENS) but ENS SNCA levels are significantly higher in PD 
patients, suggestive of altered enteric SNCA. Additionally, LBs 
have been detected in the gastrointestinal tracts (GITs) of PD 
patients (Punsoni et al., 2019). In addition to parkinsonism, 
another common feature of PD is constipation which often 
predates the motor and posture dysfunctions (Adams-Carr et 
al., 2016), thus strongly implicating gut involvement. To explain 
the pathophysiology of idiopathic PD, Braak et al. (2003) had 
hypothesized that misfolded SNCA aggregates propagated in 
the gut and then spread to the CNS via postganglionic enteric 
neurons and the vagus nerve (Braak et al., 2003). Specifically, 
Braak’s hypothesis put forth that the genesis of idiopatic PD is 
a yet to be known pathogen or perhaps environmental toxin 
that is inhaled via the nasal cavity, affecting the olfactory bulb, 
and is also swallowed, leading to the pathogen being present in 

the gut and triggering inflammatory reactions that cascade into 
pathogenic SNCA deposition in the GIT ENS before secondary 
spreading to the brain (Hawkes et al., 2007). There have been 
substantial published in vitro, in vivo, and clinical evidence 
to give credence to this ‘body-first’ hypothesis (Rietdijk et al., 
2017), but there have also been counterarguments that synucle-
inopathies are ‘brain-first’, wherein aggregated SNCA originate 
in the brain without any peripheral autonomic nervous system 
involvement (Beach et al., 2021; Borghammer et al., 2021; Lion-
net et al., 2018).  

Whether or not Braak’s hypothesis stands, there is signifi-
cant focus on the involvement of gut microbiota in α-synucle-
inopathies such as PD (Haikal et al., 2019; Kaur et al., 2021; Liu 
et al., 2020, Shen et al., 2021). Sampson et al. (2016) demon-
strated that parkinsonism motor symptoms would develop by 

Table 2. Continued
Synuclein Methodology Life stage Observations References

Human α-synuclein 
xenograft and 
human α-synuclein 
(α-syn) transgenic

Human recombinant 
α-synuclein protein 
injected into the 
cerebrospinal fluid 
(CSF) of 3-month-old 
AB wildtype and α-syn 
transgenic (Xenopus 
neural-specific

beta tubulin (NBT) 
promoter:human 
α-synuclein IRES

GFP) fish

Adults α-syn transgenic adults with very weak human α-synuclein 
expression and absence of α-synuclein inclusion bodies at 
18-months-old.

At 3 months-post-injection, robust accumulation of human 
α-synuclein and presence of α-synuclein inclusion bodies 
throughout the brain in 6-month-old α-syn transgenic fish but 
not in wildtype fish.

Matsui & Matsui, 2017

Human α-synuclein, 
SNCA (α-Syn) 
transgenic

Tg (UAS:hsa.SNCA-2A-nls-
mCherry) zebrafish 
expressing human 
wildtype α-synuclein 
crossed with Tg 
(otpb:gal4) Gal4 driver 
zebrafish line to 
activate UAS enchancer

Larvae Co-expression of human α-synuclein (mCherry reporter) in 
ventral diencephalic dopaminergic neurons at low levels to 
avoid neurodegeneration or neurobehavioral abnormalities, 
with fluorescent biosensors for cytoplasmic peroxide flux and 
glutathione oxidation detection.

Van Laar et al., 2020

Human α-synuclein, 
SNCA (α-synuclein-
GFP; A53T 
α-synuclein-
GFP; S129A 
α-synuclein-
GFP; S129D 
α-synuclein-GFP) 
transgenics

Human α-synuclein tagged 
with C-terminal Green 
Fluorescent Protein 
(α-synuclein-GFP) 
and zebrafish neuroD 
promoter. Transgene

injected into AB/TL 
wildtype embryos at 
one-cell stage

Larvae Human α-synuclein-GFP expression appearing at 2–4 dpf in the 
soma, axon, and presynaptic terminals of central and peripheral 
nervous system neurons, including some motor neurons 
projecting from the spinal cord. Robust expression persisting 
and neurons appeared healthy until at least 8 dpf. α-synuclein-
GFP enriched in presynaptic terminals of neurons at 4 dpf for 
fluorescence recovery after photobleaching (FRAP) imaging 
detection of freely diffusing, synaptic vesicle-bound, and 
aggregated α-synuclein; and immunohistochemistry detection 
of phosphorylated α-synuclein.

Weston et al., 2021

sncga, γ-synuclein A; GFP, green fluorescent protein; dpf, days post fertilisation; MO, morpholino oligonucleotides; lrrk2, leucine-rich repeat kinase 2; BDNF, brain-derived neurotrophic 
factor; PD, Parkinson’s disease; SNCA, α-synuclein; hpf, hours post fertilisation; CSF, cerebrospinal fluid; S129, Serine-129.
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transplanting gut bacteria from PD patients into the GIT of SN-
CA-overexpressing mice (Sampson et al., 2016). Several reviews 
of animals models utilised for investigating SNCA and the gut, 
highlighted the challenges involved in deciphering and translat-
ing findings to the human condition (Rey et al., 2016; Van Den 
Berge & Ulusoy, 2022; Vascellari et al., 2021). This review will 
be summarising zebrafish gut-brain-axis research and the appli-
cability for zebrafish to model transneural SNCA propagation.

Zebrafish gut-brain-axis models
Zebrafish ENS development and gut motility have been well 
described and gene orthologs identified (Baker et al., 2019; 
Ganz, 2018; Olsson et al., 2008; Shepherd & Eisen, 2011). Ze-
brafish gut and enteric innervation are functional as early as 5 
dpf and are highly conserved if somewhat simpler compared to 
the mammalian gut and ENS (Kuil et al., 2021), and the mecha-
nisms of ENS regeneration have been described in zebrafish lar-
vae (Ohno et al., 2021). The studies discussed earlier in this re-
view detailed synuclein gene expressions in zebrafish that were 
focused quite exclusively on the CNS and spinal cord or limited 
their characterisations to the embryo and larval stages (Chen 
et al., 2009b; Sun & Gitler, 2008). mRNA expression levels of 
zebrafish synuclein transcripts in adult tissues were nonetheless 
shown to be highest in the brain and low or undetectable in the 
gut (Chen et al., 2009b). This does not however preclude endog-
enous synuclein presence in the zebrafish ENS. Determination 
of the expression level of sncga in the gut of zebrafish that are 
treated with rotenone or other parkinsonism-inducing agents 
could provide for some interesting options in the use of the 
zebrafish model to chart transneural propagation of synuclein 
proteins from the gut to the brain or vice-versa. 

Zebrafish gut-brain-axis can be studied at larval and adult 
stages. Zebrafish sox10 mutant larvae that completely lacked the 
ENS and as a consequence suffered from bacterial overgrowth, 
dysbiosis and intestinal hyper-inflammation could be rescued 
somewhat by transplantation of wildtype ENS precursors into the 
mutants or by colonizing the sox10 mutant larval intestine with 
anti-inflammatory bacteria isolates from a healthy human (Rolig 
et al., 2017). Borrelli et al. (2016) were the first to report an adult 
zebrafish gut–brain-axis model. Adult wild type zebrafish be-
tween 4–6-months-old were fed probiotics twice daily for 28 days 
to induce changes in enteric microbiota, neurochemistry and 
behaviour (Borrelli et al., 2016), thus establishing the feasibility of 
the model for microbiota and gut-brain crosstalk research. Cuo-
mo et al. (2021) then utilised the model to correlate behavioural 

changes with DNA methylation epigenetics and the microbiome 
following probiotic feeding (Cuomo et al., 2021). 

As more data about PD patients’ gut microbiota become 
known (Ma et al., 2019; Pietrucci et al., 2020), the specific bac-
terial isolates and their impact can be reasonably validated in 
the zebrafish gut–brain-axis model. Davis et al. (2016) derived 
germ-free (GF) zebrafish larvae based on earlier protocols for 
generating gnotobiotic zebrafish larvae (Davis et al., 2016; Pham 
et al., 2008). The absence of microbiota in GF larvae clearly 
impacted on locomotor activity and behaviour, which were at-
tenuated by probiotic treatment. The GF larvae were exposed to 
Lactobacillus plantarum directly in the water from 4–6 dpf and 
although the larvae were too young to really eat, the bacteria 
could enter into and colonise the gut to establish the microbi-
ome (Davis et al., 2016). Zhang et al. (2021) used GF adults in 
addition to conventional laboratory fish to study gut microbiota 
regulation of neurotransmitter secretion (Zhang et al., 2021). 
Shotgun metagenomic sequencing was performed to identify 
different microbiota groups based on treatment inductions 
and elucidate a potential mode of action through the microbi-
ota-gut-brain axis for regulation and neuromodulation (Zhang 
et al., 2021). Similarly designed experiments could be designed 
using gnotobiotic humanized SNCA fish to understand the im-
pact of microbiota on synucleinopathy. 

Gut dysfunction and by extension, microbiota disruption 
can also be stress-induced to mimic the pathophysiology of 
neurodegenerative disorders (Dodiya et al., 2020; Johnson et al., 
2018). Cansız et al. (2021) exposed adult zebrafish to rotenone 
for 30 days to induce inflammation and oxidative stress in the 
gut-brain axis (Cansız et al., 2021). The rotenone-treated fish 
suffered locomotor defects indicative of CNS dysfunction. The 
group did not evaluate for synuclein gene expression but did 
measure pro-inflammation genes and brain-derived neurotroph-
ic factor (bdnf) in the intestines and brain as they demonstrated 
that caprylic acid could ameliorate neurotoxin-induced inflam-
mation and oxidative stress and augment locomotor activity 
(Cansız et al., 2021). Administration of caprylic (octanoic) acid 
by oral gavage to the rotenone-treated zebrafish was done to 
mimic ketogenic diets that have been reported to have thera-
peutic potential for PD (Cheng et al., 2009; Shaafi et al., 2016) 
and the use of the zebrafish model in this manner could be 
readily applied to oral drug discoveries for synucleinopathies.

There have been recent reviews that can be referenced on 
this topic. de Abreu et al. (2019) delineated the core gut micro-
biome between humans, rodents, and zebrafish, and discussed 
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zebrafish gut-brain crosstalk and the effects of zebrafish gut 
microbiota on different systems and on behaviour (de Abreu et 
al., 2019). Bertotto et al. (2020) reviewed the zebrafish microbi-
ota and detailed larval bacterial gut colonisation methods and 
experimental assays (Bertotto et al., 2020) as well as the use of 
zebrafish for studying xenobiotics (Koppel et al., 2017) while 
Mohanta et al. detailed the zebrafish microbiota-gut-brain-axis 
homeostasis and mechanisms of brain functioning and mod-
ulation of brain neurochemistry (Mohanta et al., 2020). Most 
recently, Lee et al. (2021) provided a thorough review on using 
the zebrafish for investigating the association between micro-
biota-gut-brain-axis and neurological disorders which can 
include synucleinopathies, and dived into utilising mutant KOs, 
knockins, and transgenic reporter zebrafish lines to fully exploit 
this model (Lee et al., 2021). 

Conclusion

The zebrafish is a highly amenable research model for inves-
tigating synucleinopathies by either utilising the zebrafish’s 
endogenous synucleins that are compensating for the absence 
of SNCA or by generating humanized transgenics that express 
the human SNCA. The different forms of synucleinopathies 
can be recapitulated in this model, which could shed light on 
the non-PD disorders that have been somewhat overshadowed 
by the focus on PD. Advanced in vivo imaging techniques can 
now be applied to visualise everything from unique bacterial 
species in the larval gut to cellular flux in the brain, providing 
incredible troves of evidence to sieve through for analysis. The 
establishment of synucleinopathy models would also lead to the 
feasibility of performing high-throughput screening assays to 
identify new therapeutics for targeted therapy against synuclein 
aggregation or to protect neurons from the aggressive onslaught 
of SNCAs. 
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