• 제목/요약/키워드: Synthetic gene

검색결과 293건 처리시간 0.021초

Sulfate Reduction for Bioremediation of AMD Facilitated by an Indigenous Acid- and Metal-Tolerant Sulfate-Reducer

  • Nguyen, Hai Thi;Nguyen, Huong Lan;Nguyen, Minh Hong;Nguyen, Thao Kim Nu;Dinh, Hang Thuy
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권7호
    • /
    • pp.1005-1012
    • /
    • 2020
  • Acid mine drainage (AMD) has been a serious environmental issue that threatens soil and aquatic ecosystems. In this study, an acid-tolerant sulfate-reducing bacterium, strain S4, was isolated from the mud of an AMD storage pond in Vietnam via enrichment in anoxic mineral medium at pH 5. Comparative analyses of sequences of the 16S rRNA gene and dsrB gene involved in sulfate reduction revealed that the isolate belonged to the genus Desulfovibrio, and is most closely related to Desulfovibrio oxamicus (with 99% homology in 16S rDNA sequence and 98% homology in dsrB gene sequence). Denaturing gradient gel electrophoresis (DGGE) analyses of dsrB gene showed that strain S4 represented one of the two most abundant groups developed in the enrichment culture. Notably, strain S4 was capable of reducing sulfate in low pH environments (from 2 and above), and resistance to extremely high concentration of heavy metals (Fe 3,000 mg/l, Zn 100 mg/l, Cu 100 mg/l). In a batch incubation experiment in synthetic AMD with pH 3.5, strain S4 showed strong effects in facilitating growth of a neutrophilic, metal sensitive Desulfovibrio sp. strain SR4H, which was not capable of growing alone in such an environment. Thus, it is postulated that under extreme conditions such as an AMD environment, acid- and metal-tolerant sulfate-reducing bacteria (SRB)-like strain S4 would facilitate the growth of other widely distributed SRB by starting to reduce sulfate at low pH, thus increasing pH and lowering the metal concentration in the environment. Owing to such unique physiological characteristics, strain S4 shows great potential for application in sustainable remediation of AMD.

재조합 대장균에서 MaoC를 이용한 지방산으로부터의 중간사슬길이 폴리하이드록시알칸산 생산 연구 (MaoC Mediated Biosynthesis of Medium-chain-length Polyhydroxyalkanoates in Recombinant Escherichia coli from Fatty Acid)

  • 박시재;이승환;오영훈;이상엽
    • KSBB Journal
    • /
    • 제29권4호
    • /
    • pp.244-249
    • /
    • 2014
  • Biosynthesis pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHA) from fatty acid ${\beta}$-oxidation pathway was constructed in recombinant Escherichia coli by introducing the Pseudomonas sp. 61-3 PHA synthase gene (phaC2) and the maoC genes from Pseudomonas putida, Sinorhizobium meliloti, and Ralstonia eutropha. The metabolic link between fatty acid ${\beta}$-oxidation pathway and PHA biosynthesis pathway was constructed by MaoC, which is homologous to P. aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1). When the E. coli W3110 strains expressing the phaC2 gene and one of the maoC genes from P. putida, Sinorhizobium meliloti, and Ralstonia eutropha were cultured in LB medium containing 2 g/L of sodium decanoate as a carbon source, MCL-PHA that mainly consists of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD), was produced. The monomer composition of PHA and PHA contents varied depending on MaoC employed for the production of PHA. The highest PHA content of 18.7 wt% was achieved in recombinant E. coli W3110 expressing the phaC2 gene and the P. putida maoC gene. These results suggest that MCL-PHA biosynthesis pathway can be constructed in recombinant E. coli strains from the b-oxidation pathway by employing MaoC able to supply (R)-3-hydroxyacyl-CoA, the substrate of PHA synthase.

Characterization of a Squalene Synthase from the Thraustochytrid Microalga Aurantiochytrium sp. KRS101

  • Hong, Won-Kyung;Heo, Sun-Yeon;Park, Hye-Mi;Kim, Chul Ho;Sohn, Jung-Hoon;Kondo, Akihiko;Seo, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권6호
    • /
    • pp.759-765
    • /
    • 2013
  • The gene encoding squalene synthase (SQS) of the lipid-producing heterotrophic microalga Aurantiochytrium sp. KRS101 was cloned and characterized. The krsSQS gene is 1,551 bp in length and has two exons and one intron. The open reading frame of the gene is 1,164 bp in length, yielding a polypeptide of 387 predicted amino acid residues with a molecular mass of 42.7 kDa. The deduced krsSQS sequence shares at least four conserved regions known to be required for SQS enzymatic activity in other species. The protein, tagged with $His_6$, was expressed into soluble form in Escherichia coli. The purified protein catalyzed the conversion of farnesyl diphosphate to squalene in the presence of NADPH and $Mg^{2+}$. This is the first report on the characterization of an SQS from a Thraustochytrid microalga.

CONTROL OF SCARRING IN ADULT WOUNDS USING ANTISENSE TRANSFORMING GROWTH FACTOR-$\beta$ OLIGODEOXYNUCLEOTIDES

  • Park, Byung-Min;Kim, Su-Ung;Lee, Seong-Yong;Chung, Hun-Taeg
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 춘계학술대회
    • /
    • pp.79-79
    • /
    • 1995
  • Although synthetic antisense oligodeoxynucleotides (ODNs) have been used to dissect gene function in vitro, technical difficulties of targeted delivery prevented the use of this approach for investigating the effect of gene products in vivo. Here we report the use of local delivery of antisense transforming growth factor-${\beta}$l (TGF-${\beta}$1) oligonucleotides to decrease the fibrosis in the skin wound. Adult wounds heal with scar-tissue formation, whereas fetal wounds heal without scarring and with a lesser inflammatory and cytokine response. We reasoned that strategy emptying antisense TGF-${\beta}$1 ODNs complementary to TGF-${\beta}$1 mRNA might decrease the scarring in dermal wound of mouse. To evaluate this concept, we tested the effects of antisense ODNs targeted to TGF-${\beta}$1 mRNA by topical application of the chemical on the skin wound. Phosphorothioate antisense ODNs was employed to retard their degradation. When antisense TGF-${\beta}$1 ODNs were applied into the wound site, there was a maked reduction of scar compared with control wound site, These effects of antisense TGF-${\beta}$1 ODNs on the scar formation were associated with decreased expression of TGF-${\beta}$1 gene. However sense TGF-${\beta}$l ODNs had no effect on expression of TGF-${\beta}$1 gene. Also, control wounds healed with excessive fibrosis, whereas the antisense treated wounds healed with less fibrosis. In conclusion, our results indicate that antisense TGF-${\beta}$1 ODNs could be used for amelioating scar formation during wound healing.

  • PDF

Regulation of Laminin Chain Gene Expression by Ovaria Steroid Hormones in Uterine Tissues of Ovariectomized Mice

  • Chanseob Shim;Dongho Geum;Park, Donchan
    • Animal cells and systems
    • /
    • 제1권1호
    • /
    • pp.115-121
    • /
    • 1997
  • To precisely analyze the role of ovarian steroids in the regulation of laminin chain gene expression in mouse uterine tissues, the ovariectomized mouse model was used. Ovariectomized mice received a single injection of steroid hormones and total RNA was isolated from whole uterine tissues. Messenger RNA levels of each laminin chain (A, 81, and 82) were determined by competitive RT-peR procedures. Estradiol decreased mRNA levels of laminin 81 chain about two-fold, and 82 chain rather moderately. Estradiol-induced inhibition of laminin 81 and 82 chain mRNA levels were completely blocked by pretreatment with estrogen receptor antagonist tamoxifen. Estriol, a short acting estrogen which cannot induce hyperplastic responses of rodent uterine tissues, also showed an inhibitory effect on 81 and 82 chain mRNA levels, while estrone, an inactive estrogen, failed to influence either 8 chain mRNA levels. Effects of steroids on A chain mRNA level were quite different from those on 8 chains. Laminin A chain mRNA level was slightly increased by estradiol treatment, but negatively affected by progesterone. Progesterone treatment greatly increased both 8 chain mRNA levels, but slightly decreased A chain mRNA level compared to the control. The effect of progesterone on laminin chain-specific mRNA levels was further increased by co-injection of estradiol in a time-dependent manner. Progesterone-induced 81 and 82 chain mRNA transcription was inhibited by RU486, a synthetic anti-progesterone /anti-glucocorticoid. The present study demonstrates for the first time that steroids are able to regulate laminin gene expression in mouse uterine tissues, indicating that steroid-regulated laminin gene expression is involved in uterine growth and probably differentiation.

  • PDF

The Hypernodulating nts Mutation Induces Jasmonate Synthetic Pathway in Soybean Leaves

  • Seo, Hak Soo;Li, Jinjie;Lee, Sun-Young;Yu, Jae-Woong;Kim, Kil-Hyun;Lee, Suk-Ha;Lee, In-Jung;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.185-193
    • /
    • 2007
  • Symbiotic nitrogen fixation with nitrogen-fixing bacteria in the root nodules is a distinctly beneficial metabolic process in legume plants. Legumes control the nodule number and nodulation zone through a systemic negative regulatory system between shoot and root. Mutation in the soybean NTS gene encoding GmNARK, a CLAVATA1-like serine/threonine receptor-like kinase, causes excessive nodule development called hypernodulation. To examine the effect of nts mutation on the gene expression profile in the leaves, suppression subtractive hybridization was performed with the trifoliate leaves of nts mutant 'SS2-2' and the wild-type (WT) parent 'Sinpaldalkong2', and 75 EST clones that were highly expressed in the leaves of the SS2-2 mutant were identified. Interestingly, the expression of jasmonate (JA)-responsive genes such as vspA, vspB, and Lox2 were upregulated, whereas that of a salicylate-responsive gene PR1a was suppressed in the SS2-2 mutant. In addition, the level of JA was about two-fold higher in the leaves of the SS2-2 mutant than in those of the WT under natural growth conditions. Moreover, the JA-responsive gene expression persists in the leaves of SS2-2 mutant without rhizobia infection in the roots. Taken together, our results suggest that the nts mutation increases JA synthesis in mature leaves and consequently leads to constitutive expression of JA-responsive genes which is irrelevant to hypernodulation in the root.

Transcriptional Regulatory Role of NELL2 in Preproenkephalin Gene Expression

  • Ha, Chang Man;Kim, Dong Hee;Lee, Tae Hwan;Kim, Han Rae;Choi, Jungil;Kim, Yoonju;Kang, Dasol;Park, Jeong Woo;Ojeda, Sergio R.;Jeong, Jin Kwon;Lee, Byung Ju
    • Molecules and Cells
    • /
    • 제45권8호
    • /
    • pp.537-549
    • /
    • 2022
  • Preproenkephalin (PPE) is a precursor molecule for multiple endogenous opioid peptides Leu-enkephalin (ENK) and Met-ENK, which are involved in a wide variety of modulatory functions in the nervous system. Despite the functional importance of ENK in the brain, the effect of brain-derived factor(s) on PPE expression is unknown. We report the dual effect of neural epidermal growth factor (EGF)-like-like 2 (NELL2) on PPE gene expression. In cultured NIH3T3 cells, transfection of NELL2 expression vectors induced an inhibition of PPE transcription intracellularly, in parallel with downregulation of protein kinase C signaling pathways and extracellular signal-regulated kinase. Interestingly, these phenomena were reversed when synthetic NELL2 was administered extracellularly. The in vivo disruption of NELL2 synthesis resulted in an increase in PPE mRNA level in the rat brain, suggesting that the inhibitory action of intracellular NELL2 predominates the activation effect of extracellular NELL2 on PPE gene expression in the brain. Biochemical and molecular studies with mutant NELL2 structures further demonstrated the critical role of EGF-like repeat domains in NELL2 for regulation of PPE transcription. These are the first results to reveal the spatio-specific role of NELL2 in the homeostatic regulation of PPE gene expression.

저분자량 수용성 키토산을 이용한 동맥 벽 표적성 유전자 전달체의 합성 (The Synthesis of Artery Wall Targeted Gene Carrier Using Low Molecular Water-Soluble Chitosan)

  • 최창용;장미경;나재운
    • 폴리머
    • /
    • 제30권4호
    • /
    • pp.279-285
    • /
    • 2006
  • 유전자 치료에 있어서 안전성의 장점을 지니고 있는 비바이러스성 전달체에 대한 관심도가 높아져가고 있다. 비바이러스성 전달체 중, 양이온성 리포좀이나 합성 유전자 전달체는 in vitro계에서 효율적인 DNA 전달체이지만, 낮은 생체적합성으로 인하여 in vivo 계에서의 응용성은 크게 뒤떨어지고 있다. 한편, 천연 양이온성 다당류인 키토산은 낮은 독성과 강한 양전하를 띠고 있어 유전자 전달 시스템 (gene delivery system)에 있어 아주 기대되는 전달체이다. 본 연구에서는 저분자량 수용성 키토산 (low molecular water-soluble chitosan ; LMWSC)을 이용하여 동맥 벽 세포를 표적할 수 있는 표적성 유전자 전달체를 합성하였다. 상대 점도와 Kina 적정법을 이용하여 LMWSC의 점도 평균 분자량 $(M_W)$과 탈아세틸화도 (degree of de acetylation ; DDA)를 측정하였고 구조는 FTIR, $^1H-NMR$, 그리고 $^{13}C-NMR$을 통하여 분석하였다. 동맥 벽을 표적하기 위한 유전자 전달체로서 pegylated LMWSC 의 말단에 특이성 세포 표적 펩타이드인 artery wall binding peptide (AWBP)를 결합시킴으로써 AWBP-PEG-g-LMWSC을 합성하였고 FTIR, $^1H-NMR$. zeta potentiometer. 그리고 atomic force microscopy (AFM)을 이용하여 분석하였다.

합성화학물질들의 유전독성평가(Ⅶ) -합성 제초제인 Pendimethalin- (Evaluation of the Genetic Toxicity of Synthetic Chemicals (Ⅶ) -A Synthetic Selective Herbicide, Pendimethalin-)

  • Ryu, Jae-Chun;Kim, Kyung-Ran
    • Environmental Analysis Health and Toxicology
    • /
    • 제18권2호
    • /
    • pp.121-129
    • /
    • 2003
  • Pendimethalin [N-(1-ethyl-propyl)-2, 6-dinitro-3, 4-xylidine, $C_{13}$H$_{19}$N$_3$O$_4$, M.W. = 281.3, CAS No. 40481-42-1]는 제초제의 일종으로, 본 연구에서는 박테리아 복귀 돌연변이 시험과 포유동물 세포를 이용한 염색체 이상 시험 및 마우스를 이용한 in vivo 소핵 시험을 수행하여 pendimethalin의 유전독성을 평가하였다. 박테리아 복귀 돌연변이 시험에서 pendimethalin은 Salmonella thphimurium TA98, TA1537 균주의 경우, 대사 활성계 존재와 부재시,TA100의 경우는 대사 활성계 부재시에만 313∼5,000 $\mu\textrm{g}$/p1a1e의 범위에서 농도의존적인 돌연변이율의 증가를 보여주었고, TA1535의 경우에는 대사 활성계 존재시 약간의 돌연변이가 증가되는 것을 관찰할 수 있었다. 그러나 대사 활성계 부재시 TA1535와 대사 활성계 존재시 TA100균주의 경우에는 돌연변이 유발능을 관찰할 수 없었다. 한편 포유동물 세포인 Chinese hamster lung(CHL) fibroblast를 이용한 염색체 이상 시험에서 pendimethalin은 대사 활성계 존재 및 부재시 2.32∼9.28 $\mu\textrm{g}$/ml 농도에서 clastogenicity를 보이지 않았다. 또한 203∼810 mg/kg의 pendimethalin을 구강 투여한 마우스의 골수세포를 이용한 in vivo소핵 시험의 결과에서도 통계적으로 유의한 소핵 유발능을 관찰할 수 없었다.다.

Isolation, Characterization, and Molecular Cloning of the cDNA Encoding a Novel Phytase from Aspergillus niger 113 and High Expression in Pichia pastoris

  • Xiong, Ai Sheng;Yao, Quan-Hong;Peng, Ri-He;Li, Xian;Fan, Hui-Qin;Guo, Mei-Jin;Zhang, Si-Liang
    • BMB Reports
    • /
    • 제37권3호
    • /
    • pp.282-291
    • /
    • 2004
  • Phytases catalyze the release of phosphate from phytic acid. Phytase-producing microorganisms were selected by culturing the soil extracts on agar plates containing phytic acid. Two hundred colonies that exhibited potential phytase activity were selected for further study. The colony showing the highest phytase activity was identified as Aspergillus niger and designated strain 113. The phytase gene from A. niger 113 (phyI1) was isolated, cloned, and characterized. The nucleotide and deduced amino acid sequence identity between phyI1 and phyA from NRRL3135 were 90% and 98%, respectively. The identity between phyI1 and phyA from SK-57 was 89% and 96%. A synthetic phytase gene, phyI1s, was synthesized by successive PCR and transformed into the yeast expression vector carrying a signal peptide that was designed and synthesized using P. pastoris biased codon. For the phytase expression and secretion, the construct was integrated into the genome of P. pastoris by homologous recombination. Over-expressing strains were selected and fermented. It was discovered that ~4.2 g phytase could be purified from one liter of culture fluid. The activity of the resulting phytase was 9.5 U/mg. Due to the heavy glycosylation, the expressed phytase varied in size (120, 95, 85, and 64 kDa), but could be deglycosylated to a homogeneous 64 kDa species. An enzymatic kinetics analysis showed that the phytase had two pH optima (pH 2.0 and pH 5.0) and an optimum temperature of $60^{\circ}C$.