• Title/Summary/Keyword: Synthetic biology

Search Result 370, Processing Time 0.035 seconds

Purification and characterization of an extracellular protease from culture filtrate of salmonella schttmulleri

  • Na, Byoung-Kuk;Song, Chul-Yong
    • Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.244-251
    • /
    • 1995
  • An extracellular protease of Salmonella schottmulleri was purified from culture filtrate by using 0-75% ammonium sulfate precipitation, DEAE Sepharose Fast Flow ion exchange chromatography, Ultrogel HA chromatography and Sephacryl S-200 HR molecular sieve chromatography. To measure enzyme activity, synthetic dipeptide substrate (CBZ-arg-arg-AFC) with low molecular weight was employed as substrate. The molecular weight of the purified enzyme was approximately 80 kDa when determined by gel filtration on Sephacryl S-200 HR and 73 kDa when estimated by SDS-PAGE. The isoelectric point was 5.45. The activity of the purified enzyme was inhibited by metal chelating agesnts such as EDTA and 1.10-phenanthroline. The divalent cations, such as Ca$\^$2+/, Zn$\^$2+/, Fe$\^$2+/, Mg$\^$2+/ enhanced its activity. These results suggested that it was a metalloprotease. It had a narrow pH optimum of 6.5-7.5 with a maximum at pH 7.0 and a temperature optimum of 40.deg.C. It was stable at least for 1 week at 40.deg.C and maintained its activity for 24 hours at 50.deg.C, but it was rapidly inactivated at 65.deg.C. This protease was shown to be sensitive to sodium 50.deg.C, but it was rapidly inactivated at 65.deg.C. This protease was shown to be sensitive to sodium 50.deg.C, but it was rapidly inactivated at 65.deg.C. This protease was shown to be sensitive to sodium 50.deg.C, but it was rapidly inactivated at 65.deg.C. This protease was shown to be sensitive to sodium dodecyl sulfate (SDS) and was inactivated in a dose-dependent manner. However, it was resistant to Triton X-100 and the activity was enhanced to 32.3% with treatment of 0.025% Triton X-100.

  • PDF

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon Hae-Jeong;Baek Dong-Won;Lee Ji-Young;Nam Jae-Sung;Yun Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.143-148
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorhodamine123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MSP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to playa novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon, Hae-Jeong;Baek, Dong-Won;Lee, Ji-Young;Nam, Jae-Sung;Yun, Dae-Jin
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.65-71
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorho-damine 123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MBP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to play a novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

  • PDF

Adverse Reproductive Effects on Plasma Vitellogenin and Sex Steroid Levels, and Gonadosomatic Index in Juvenile Common Carps (Cyprinus carpio) Exposed to 17$\beta$-Estradiol and D-2-Ethylhexyl Phthalate

  • Seo, Jinwon;Park, Kyung-Seo;Moon, Woon-Gi;Lee, Sung-Kyu
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2002.11a
    • /
    • pp.141-144
    • /
    • 2002
  • Environmental estrogens are natural or synthetic substances present in the aquatic environment, especially in effluent from sewage treatment. However, the adverse effects of these estrogenic substances on fish reproduction are unknown. Di-2-ethylhexyl phthalate (DEHP) is the most common phthalate, which Ps used as a plasticizer in polyvinylchloride (PVC), and it is widespread in the environment and has been found in aquatic organisms and sediments. Therefore, juvenile common carps (Cyprinus carpio) were exposed to nominal concentrations of 17$\beta$-estradiol (E2) (0.5, 5, 50 $\mu\textrm{g}$/L) and DEHP (10, 100, 500 $\mu\textrm{g}$/L) for 21 days, to determine the adverse reproductive effects of these compounds on plasma vitellogenin (VTG) induction, sex steroid level, and gonad weight. Electrophoresis (SDS-PAGE) revealed that much of VTG was induced in fish exposed to 5 and 50 E$_2$ $\mu\textrm{g}$/L, but none of DEHP exposure showed induction. Enzyme-linked immunosorbent assay (ELISA) revealed that VTG was significantly induced in fish exposed to 5 and 50 E$_2$ $\mu\textrm{g}$/L, and combination of 50 E$_2$ $\mu\textrm{g}$/L with 10 and 500 DEHP $\mu\textrm{g}$/L, but none of DEHP exposure showed induction. Analysis of sex steroid levels in some fish revealed that testosterone (T) was detected in both male and female fish of the control and DEHP exposures, but none of fish exposed to 22 concentrations had detectable testosterone level. On the other hand, E$_2$ exposure induced 17$\beta$-estradiol in plasma of male fish, but there was no induction of 17$\beta$-estradiol in plasma of male fish exposed to DEHP. Comparison of gonadosomatic index (GSI) revealed that maximal E$_2$ exposure inhibited ovarian growth, but maximal DEHP exposure stimulated testicular growth. The results indicated that those comparisons can be a useful bio-indicator for determining adverse reproductive effect of endocrine disrupting chemicals (EDCs).

  • PDF

Toward Complete Bacterial Genome Sequencing Through the Combined Use of Multiple Next-Generation Sequencing Platforms

  • Jeong, Haeyoung;Lee, Dae-Hee;Ryu, Choong-Min;Park, Seung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.207-212
    • /
    • 2016
  • PacBio's long-read sequencing technologies can be successfully used for a complete bacterial genome assembly using recently developed non-hybrid assemblers in the absence of second-generation, high-quality short reads. However, standardized procedures that take into account multiple pre-existing second-generation sequencing platforms are scarce. In addition to Illumina HiSeq and Ion Torrent PGM-based genome sequencing results derived from previous studies, we generated further sequencing data, including from the PacBio RS II platform, and applied various bioinformatics tools to obtain complete genome assemblies for five bacterial strains. Our approach revealed that the hierarchical genome assembly process (HGAP) non-hybrid assembler resulted in nearly complete assemblies at a moderate coverage of ~75x, but that different versions produced non-compatible results requiring post processing. The other two platforms further improved the PacBio assembly through scaffolding and a final error correction.

Preconcentration and Determination of Copper(II) Using Octadecyl Silica Membrane Disks Modified by 2-Propylpiperidine-1-carbodithioate and Flame Atomic Absorption Spectrometry (2-Propylpiperidine-1-carbodithioate로 수식화한 Octadecyl 실리카 막으로 구리(II)의 예비농축 및 불꽃 원자흡수분광법으로의 정량)

  • Moghimi, Ali;Mossalayi, Haydar
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.2
    • /
    • pp.148-154
    • /
    • 2008
  • A simple and fast method for extraction and determination of trace amounts of copper(II) ions using octadecyl-bonded silica membrane disks modified with 2-propylpiperidine-1-carbodithioate (PPCD)I and atomic absorption spectrometry (AAS) is introduced. Extraction efficiency and the influence of flow rates, pH, and type and smallest amount of stripping acid were investigated. Maximum capacity of the membrane disks modified with 2 mg of the anthraquinone derivative used was found to be 425μg Cu2+. The limit of detection of the proposed method is 7 ng/ml. The method is applied to the recovery of Cu2+ from different synthetic samples and a spring water sample.

STK899704 inhibits stemness of cancer stem cells and migration via the FAK-MEK-ERK pathway in HT29 cells

  • Jang, Hui-Ju;Bak, Yesol;Pham, Thu-Huyen;Kwon, Sae-Bom;Kim, Bo-Yeon;Hong, JinTae;Yoon, Do-Young
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.596-601
    • /
    • 2018
  • Colon cancer is one of the most lethal and common malignancies worldwide. STK899704, a novel synthetic agent, has been reported to exhibit anticancer effects towards numerous cancer cells. However, the effect of STK899704 on the biological properties of colon cancer, including cancer cell migration and cancer stem cells (CSCs), remains unknown. Here, we examined the inhibitory effect of STK899704 on cell migration and CSC stemness. In the wound healing assay, STK899704 significantly inhibited the motility of colon cancer cells. Furthermore, STK899704 downregulated the mRNA expression levels of the cell migration mediator focal adhesion kinase (FAK). STK899704 also suppressed mitogen-activated protein kinase kinase and extracellular signal-regulated kinase, which are downstream signaling molecules of FAK. Additionally, STK899704 inhibited stemness gene expression and sphere formation in colon cancer stem cells. These results suggest that STK899704 can be used to treat human colon cancer.

Overcoming multidrug resistance by activating unfolded protein response of the endoplasmic reticulum in cisplatin-resistant A2780/CisR ovarian cancer cells

  • Jung, Euitaek;Koh, Dongsoo;Lim, Yoongho;Shin, Soon Young;Lee, Young Han
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.88-93
    • /
    • 2020
  • Cisplatin is a widely used anti-cancer agent. However, the effectiveness of cisplatin has been limited by the commonly developed drug resistance. This study aimed to investigate the potential effects of endoplasmic reticulum (ER) stress to overcome drug resistance using the cisplatin-resistant A2780/CisR ovarian cancer cell model. The synthetic chalcone derivative (E)-3-(3,5-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (named DPP23) is an ER stress inducer. We found that DPP23 triggered apoptosis in both parental cisplatin-sensitive A2780 and cisplatin-resistant A2780/CisR ovarian cancer cells due to activation of reactive oxygen species (ROS)-mediated unfolded protein response (UPR) pathway in the endoplasmic reticulum. This result suggests that ROS-mediated UPR activation is potential in overcoming drug resistance. DPP23 can be used as a target pharmacophore for the development of novel chemotherapeutic agents capable of overcoming drug resistance in cancer cells, particularly ovarian cancer cells.

Conformational Change of Escherichia coli Signal Recognition Particle Ffh Is Affected by the Functionality of Signal Peptides of Ribose-Binding Protein

  • Ahn, Taeho;Ko, Ju Hee;Cho, Eun Yi;Yun, Chul-Ho
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.681-687
    • /
    • 2009
  • We examined the effects of synthetic signal peptides, wild-type (WT) and export-defective mutant (MT) of ribose-binding protein, on the conformational changes of signal recognition particle 54 homologue (Ffh) in Escherichia coli. Upon interaction of Ffh with WT peptide, the intrinsic Tyr fluorescence, the transition temperature of thermal unfolding, and the GTPase activity of Ffh decreased in a peptide concentration-dependent manner, while the emission intensity of 8-anilinonaphthalene-1-sulfonic acid increased. In contrast, the secondary structure of the protein was not affected. Additionally, polarization of fluorescein-labeled WT increased upon association with Ffh. These results suggest that WT peptide induces the unfolded states of Ffh. The WT-mediated conformational change of Ffh was also revealed to be important in the interaction between SecA and Ffh. However, MT had marginal effect on these conformational changes suggesting that the in vivo functionality of signal peptide is important in the interaction with Ffh and concomitant structural change of the protein.

Construction of multiple mutant strains by mating procedures for the cloning of pmn and pmb genes encoding amino acid permeases in neurospora crassa

  • Han, Hyo-Young;Min, Kyung-Hee
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.142-145
    • /
    • 1995
  • The pumb gene encoding a basic amino acid transport protein in Neurospora crassa could be cloned by using a mutant strain defective in pmb gene as a host strain, using a negative selection on the media containing amino acid analogue canavanine. To select positive transformants of the genes for cloning, an auxotrophic marker (his-2) was added to a pmb mutant strain by mating ; a triple mutant (pmn : pmb : his-2) was constructued by crossing a strain defective in basic amino acid transport system (# 1683-bat um 535 "A") to a double mutant strain defective in neutral amino acid transport and histidine production (mitrol : his-2 "a"). Crossing was performed on synthetic crossing (SC) media containing histidine. The pmn : pmb and pmn :pmb : his-2 strains were selected among the progeny colonies from crosses on plates containing 5- .mu.g/ml para-fluoro-phenylalanine (PFPA), 200 .mu.g/ml canavanine, and 500 .mu.g/ml histidine. The selected colonies were cultured on minimal media with or without histidine for discarding pmn : pmb strain, because the pmn : pmb : his -2 strain grows only on histidine containing media. The pmn :pmb : his-2 strain selected can be used as a host strain for the cloning of the pmb and the pmn genes from a Neurospora genomic library by means of positive selections.

  • PDF