• 제목/요약/키워드: Synthesized carbon

검색결과 1,170건 처리시간 0.026초

Studies on Pore Characteristics of Microporous Carbons Prepared with Different Types of Silica Templates

  • Manocha, S.;Movaliya, Narendra
    • Carbon letters
    • /
    • 제8권1호
    • /
    • pp.17-24
    • /
    • 2007
  • Microporous carbons with narrow pore size distribution have been successfully synthesized by using hydrolyzed and calcined silica as templates and phenol formaldehyde (pf) resin as carbon precursor. Phenol formaldehyde-silica micro composites were prepared by solution route. Subsesequently, silica templates were removed by HF leaching. Resulting carbons were steam activated. The porous carbons were characterized by nitrogen adsorption-desorption isotherm, SEM, FTIR analysis, iodine adsorption, thermogravimetry analysis, etc. Adsorption isotherms show that the porous carbon prepared from calcined silica as templates are microporous with 88% pores of size <2 nm porosity and are of type I isotherm, while porous carbon prepared by using hydrolyzed silica are microporous with 89% microporosity, shows hysteresis loop at high relative pressure indicating the presence of some mesoporosity in samples. The microporosity in porous carbon materials has a bearing on the nature of silica templates used for pore formation.

리튬이온전지의 음극 재료로서 저온합성탄소의 전기화학적 특성의 향상 (Improvement of the electrochemical properties of low temperature synthesized carbon for anode materials in lithium-ion batteries)

  • 이헌영;장석원;신건철;이성만;이종기;이승주;백홍구
    • 한국결정성장학회지
    • /
    • 제10권1호
    • /
    • pp.55-61
    • /
    • 2000
  • 리튬이온전지의 음극재료로서 hard carbon에 PVC를 이용한 탄소를 코팅함으로써 비가역용량 감소와 가역용량 증가 등 전기화학적 특성이 향상되었다. 이러한 특성 향상은 PVC코팅에 의한 표면개질로 대기와의 반응을 억제함에 기인한 것으로 생각되며, 또한 Ni 첨가에 의해 PVC 탄소의 흑연화 정도를 조절할 수 있었으며, 이들과 관련된 전기화학적 특성을 비교 고찰하였다.

  • PDF

Enhanced superconducting properties of MgB2 by doping the carbon quantum dots

  • K.C., Chung;S.H., Jang;Y.S., Oh;S.H., Kang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권4호
    • /
    • pp.55-58
    • /
    • 2022
  • Carbon-based doping to MgB2 superconductor is the simplest approach to enhance the critical current densities under magnetic fields. Carbon quantum dots is synthesized in this work as a carbon provider to MgB2 superconductors. Polyvinyl Pyrrolidone is pyrolyzed and dispersed in dimethylfomamide solvent as a dopant to the mixture of Mg and B powders. Doped MgB2 bulk samples clearly show the decrease of a-axis lattice constant, grain refinements, and broadening of FWHM of diffraction peaks compared to un-doped MgB2 possibly due to the carbon substitution and/or boron vacancy at the boron site in MgB2 lattice. Also, high-field Jc for the doped MgB2 is enhanced significantly with the crossover about 3 T at 5 & 20 K when increasing the doping of carbon quantum dots.

열플라즈마를 이용한 탄소 나노 물질의 합성 및 특성에 관한 연구 (A Study on the Synthesis and Characteristics of Carbon Nanomaterials by Thermal Plasma)

  • 강성표;김태희
    • 한국표면공학회지
    • /
    • 제57권3호
    • /
    • pp.155-164
    • /
    • 2024
  • Physical properties of carbon nanomaterials are dependent on their nanostructures and they are modified by diverse synthesis methods. Among them, thermal plasma method stands out for synthesizing carbon nanomaterials by controlling chemical and physical reactions through various design and operating conditions such as plasma torch type, plasma gas composition, power capacity, raw material injection rate, quenching rate, kinds of precursors, and so on. The method enables the production of carbon nanomaterials with various nanostructures and characteristics. The high-energy integration at high-temperature region thermal plasma to the precursor is possible to completely vaporize precursors, and the vaporized materials are rapidly condensed to the nanomaterials due to the rapid quenching rate by sharp temperature gradient. The synthesized nanomaterials are averagely in several nanometers to 100 nm scale. Especially, the thermal plasma was validated to synthesize low-dimensional carbon nanomaterials, carbon nanotubes and graphene, which hold immense promise for future applications.

열분해유 유래 피치로부터 이방성 미세구조 코크스 제조 및 특성 평가 (Preparation and Characterization of Pitch based Coke with Anisotropic Microstructure Derived from Pyrolysis Fuel Oil)

  • 조종훈;김지홍;이영석;임지선;강석창
    • 공업화학
    • /
    • 제32권6호
    • /
    • pp.640-646
    • /
    • 2021
  • 본 연구에서는 열분해유 유래 피치 합성 및 합성 피치로부터 이방성 미세구조를 갖는 코크스를 제조하고 그 특성을 평가하였다. 열분해유는 주로 방향족 고리가 2~3개로 구성된 분자로 이루어져 있어, 400 ℃ 이상의 온도에서 흡열반응인 축합중합으로 피치가 제조되었다. 코크스 반응기는 피치를 유동화 시키는 전처리 반응기, 코킹화 열에너지를 가해주는 preheater 및 코크스의 미세구조를 유도하는 코크스 드럼으로 구성되었으며, preheater의 온도를 400~490 ℃로 조절하여 제조된 피치로부터 코크스를 제조하고 편광현미경, XRD 및 Raman spectroscopy로 특성을 평가하였다. Preheater의 온도가 460 ℃에서 제조된 코크스는 이방성 미세조직이 flow 형태로 나타났으며, 높은 결정성으로 전기전도성이 72.0 S/cm이였다. 그리고 전도성 탄소 재료인 Super-P보다 대략 2.2배 높은 전기전도성을 나타냈다.

Simple one-step synthesis of carbon nanoparticles from aliphatic alcohols and n-hexane by stable solution plasma process

  • Park, Choon-Sang;Kum, Dae Sub;Kim, Jong Cheol;Shin, Jun-Goo;Kim, Hyun-Jin;Jung, Eun Young;Kim, Dong Ha;Kim, Daseulbi;Bae, Gyu Tae;Kim, Jae Young;Shin, Bhum Jae;Tae, Heung-Sik
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.31-37
    • /
    • 2018
  • This paper examines a simple one-step and catalyst-free method for synthesizing carbon nanoparticles from aliphatic alcohols and n-hexane with linear molecule formations by using a stable solution plasma process with a bipolar pulse and an external resistor. When the external resistor is adopted, it is observed that the current spikes are dramatically decreased, which induced production of a more stable discharge. Six aliphatic linear alcohols (methanol-hexanol) containing carbon with oxygen sources are studied as possible precursors for the massive production of carbon nanoparticles. Additional study is also carried out with the use of n-hexane containing many carbons without an oxygen source in order to enhance the formation of carbon nanoparticles and to eliminate unwanted oxygen effects. The obtained carbon nanoparticles are characterized with field emission-scanning electron microscopy, energy dispersive X-ray spectroscopy, and Raman spectroscopy. The results show that with increasing carbon ratios in alcohol content, the synthesis rate of carbon nanoparticles is increased, whereas the size of the carbon nanoparticles is decreased. Moreover, the degree of graphitization of the carbon nanoparticles synthesized from 1-hexanol and n-hexane with a high carbon (C)/oxygen (O) ratio and low or no oxygen is observed to be greater than that of the carbon nanoparticles synthesized from the corresponding materials with a low C/O ratio.

효모의 배양시기에 따른 인산화합물의 합성 및 효흡능에 미치는 탄수원의 영향 (Effect of the Carbon sources on the Synthesis of phosphate compounds and Respiratory activity of Yeast (saccharomyces uvarm) during growth phases)

  • 이종삼;조선의;이기성;신홍기;최영길
    • 미생물학회지
    • /
    • 제19권2호
    • /
    • pp.63-77
    • /
    • 1981
  • The growth rate of yeast population (Saccharomyces uvarum) cultivated in the Knopp's modified medium (plus various carbon sources) appeared the highest value when the Knopp's minimal medium was treated to 1.5% with disaccharide such as maltose and sucrose. Also the treatment of lactose and raffinose resulted in polulation growth as to the population size in case of maltose and sucrose. However, the gorwth of yeast was not occurred at all when a polysaccharide, such as inulin, was added as carbon source. The growth from of yeast population in Knopp's modified medium are characterized by the fact that log phase continued 100hrs after inoculation and that stationary state phase appeared in general 250hrs after inoculation. Applying the various carbon sources to respiration substrate for yeast cell, the respiration rate of yeast showed the highest value in treatment of maltose and followed in order of raffinose, lactose, glucose, and sucrose. Determined the amount of poly-phosphate and turn over pathway of poly-phosphate according to culture phase of yeast, it is revealed that the yeast synthesized 3 types of poly phosphate (poly-P A,B, and C) and postulated that turn over pathway of poly-phosphate as follows ; Inorganic phosphate is converted into each kind of polyphosphates, and then one part of poly-P-C is converted into poly-P-B, the rest poly-p-C and poly-P-B are converted into poly-P-A. The synthesized poly-phosphate is considered to have a role as energy pool utilizing to synthesis of cellular organic materials. Of the 13 carbon sources used in this experiment, the useful carbon sources for biosynthesis of poly-phosphate and cellular organic materials are confirmed as disaccharide (maltose and sucrose) as well as glucose. Protein synthesis in yeast cell showed the two peaks on 6th and 8th day after inoculation ; nucleic acid on 2nd day (48hrs), carbohydrates on 2nd day (48hrs), and phospholipid on 2nd and 8th day after inoculation, respectively.

  • PDF

수분산 폴리우레탄 및 탄소나노섬유 복합체의 물리적 특성 (Study on Physical Properties of Waterborne Polyurethane and Carbon Nanofiber Composites)

  • 임석대;고상철;곽이구
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.24-29
    • /
    • 2021
  • In this study, the electrical and mechanical properties of carbon polymer composites, which have been gradually increasing in use in various fields, were investigated, and environment-friendly carbon nanofiber/waterborne polyurethane composites were prepared. Carbon nanofibers (diameter = approximately 100-300 mm) were synthesized using a relatively simple CVD process, obtaining a carbon material for application in ultrathin planar heating films and EMP shielding films in the future. The carbon nanofiber was dispersed, and mixed with water-dispersible polyurethane using a dispersing aid. According to the carbon nanofiber mass ratio, 20%-60% polyurethane/carbon nanofiber composites were manufactured. At a concentration of approximately 20%, the percolation threshold was determined, and at a concentration of approximately 50%, an electrical conductivity greater than 0.1 S/cm was determined. Moreover, a sample having a concentration of up to 60% was evaluated to further understand the mechanical properties. It was observed that as the concentration of the carbon nanofibers increased, the elongation decreased.

환원/침탄공정에 의한 TiC/Co 복합분말 합성 (Synthesis of TiC/Co Composite Powder by the Carbothermal Reduction Process)

  • 이길근;하국현
    • 한국분말재료학회지
    • /
    • 제16권5호
    • /
    • pp.310-315
    • /
    • 2009
  • Ultra-fine TiC/Co composite powder was synthesized by the carbothermal reduction process without wet chemical processing. The starting powder was prepared by milling of titanium dioxide and cobalt oxalate powders followed by subsequent calcination to have a target composition of TiC-15 wt.%Co. The prepared oxide powder was mixed again with carbon black, and this mixture was then heat-treated under flowing argon atmosphere. The changes in the phase, mass and particle size of the mixture during heat treatment were investigated using XRD, TG-DTA and SEM. The synthesized oxide powder after heat treatment at 700$^{\circ}C$ has a mixed phase of TiO$_2$ and CoTiO$_3$ phases. This composite oxide powder was carbothermally reduced to TiC/Co composite powder by the solid carbon. The synthesized TiC/Co composite powder at 1300$^{\circ}C$ for 9 hours has particle size of under about 0.4 $\mu$m.

Maghemite를 이용한 일산화탄소 감지 특성에 관한 연구 (Studies on the Sensing Charcteristics of Carbon-monoxide Using the Maghemite)

  • 박영구
    • 한국환경보건학회지
    • /
    • 제21권4호
    • /
    • pp.24-31
    • /
    • 1995
  • Gas sensing element, $\alpha-Fe_2O_3$ was synthesized by dehydration, reduction, and oxidation of $\alpha-FeOOH$, which was synthesized with $FeSO_4\cdot 7H_2O$ and NaOH. They were produced as a bulk-type, a thick film-type. Then, their responses and mechanisms of response to the gas of carbon monoxide were studied. The qualities of gas sefising elements are decided by the structure and the relative surface area. In the process of $\alpha-FeOOH$ synthesis, the effects of reaction conditions as the equivalent ratio, on the structure and the relative surface area of gas sensing element were observed. The changes of the structure were measured with XRD, SEM,TG-DTA and BET. The resistance changes of the synthesized gas sensor in the air were measured. The response ratio were also measured for the changes of working temperature and gas concentration. As a result of analysis with XRD, it was confirmed that the the best conditions for the synthesis of $\alpha-FeOOH$ were equivalent ratio 0.65. The thick film-type element of $\gamma-Fe_2O_3$ responded more quickly than the bulk-type did. The structure and the relative surface area of the $\rho-FeOOH$ were confirmed as the important factors deciding gas response charcteristics.

  • PDF