• 제목/요약/키워드: Synthesis optimization

검색결과 411건 처리시간 0.022초

다중물리 전산모사를 이용한 물성 최적화 이론 및 시뮬레이션 (Material Design Using Multi-physics Simulation: Theory and Methodology)

  • 현상일
    • 한국전기전자재료학회논문지
    • /
    • 제27권12호
    • /
    • pp.767-775
    • /
    • 2014
  • New material design has obtained tremendous attention in material science community as the performance of new materials, especially in nano length scale, could be greatly improved to applied in modern industry. In certain conditions limiting experimental synthesis of these new materials, new approach by computer simulation has been proposed to be applied, being able to save time and cost. Recent development of computer systems with high speed, large memory, and parallel algorithms enables to analyze individual atoms using first principle calculation to predict quantum phenomena. Beyond the quantum level calculations, mesoscopic scale and continuum limit can be addressed either individually or together as a multi-scale approach. In this article, we introduced current endeavors on material design using analytical theory and computer simulations in multi-length scales and on multi-physical properties. Some of the physical phenomena was shown to be interconnected via a cross-link rule called 'cross-property relation'. It is suggested that the computer simulation approach by multi-physics analysis can be efficiently applied to design new materials for multi-functional characteristics.

헬리컬 치차의 진동최소화를 위한 치면 수정량의 결정 (Determination of the Tooth Modification Amounts for Minimizing the Vibration of Helical Gear)

  • 정태형;명재형;김기태
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.199-205
    • /
    • 2000
  • The vibration and noise of gears is due to the vibration exciting force caused by the tooth stiffness which changes periodically as the mesh of teeth proceeds and by the transmission error, that is, the rotation delay between driving gear and driven gear caused by manufacturing error and alignment error in assembly and so on. The purpose of this study is to develop how to calculate simultaneously the optimum amounts of tooth profile modification, end relief and crowning by minimizing the vibration exciting force of helical gears. We estimate the vibration exciting force by the mesh analysis of gears. The constraints of this problem consist of contact ratio and strengths of gear teeth such as tooth fillet stress, surface durability and scoring. ADS(Automated Design Synthesis) is used as an optimization tool. And, since the aspect ratio is an important parameter of tooth modification, we investigate the relation between it and the optimum values of tooth modification. The proposed method can calculate the optimum amount of tooth modification automatically and is to be utilized to resolve the problem of vibration of helical gears.

  • PDF

2-큐브 비커널을 이용한 부울 분해식 산출 (Boolean Factorization Using Two-cube Non-kernels)

  • 권오형;전병태
    • 한국산학기술학회논문지
    • /
    • 제11권11호
    • /
    • pp.4597-4603
    • /
    • 2010
  • 분해식 산출은 다단 논리식 산출에 매우 중요한 부분을 담당한다. 분해식의 리터럴 개수는 논리함수의 복잡도를 나타내는 기준이 되며, 또한 논리식을 회로로 구현할 경우 리터럴의 개수는 트랜지스터의 개수와 비례하게 된다. 분해식을 산출하는 수행시간과 최적화의 적정성을 맞추기 위해 분해식은 대수 분해식과 부울 분해식 산출로 구분하며, 부울 분해식이 대수 분해식보다 적은 리터럴 개수로 같은 논리식을 표현할 수 있다. 본 논문에서는 부울 분해식을 산출하기 위한 방법을 제시한다. 제안하는 핵심 방법은 2개의 2-큐브 비커널을 이용하여 이들의 곱을 구하여 부울 분해식을 산출하는 것이다. 벤치마크 회로를 통한 실험 결과 이전의 다른 분해식 산출 방법들보다 리터럴 개수를 줄일 수 있었다.

곁사슬에 아미노기를 도입한 생분해성 지방족 폴리에스테르의 합성 (Synthesis of Biodegradable Aliphatic Polyester with Amino Group in the Side Chain)

  • 이찬우
    • 폴리머
    • /
    • 제34권4호
    • /
    • pp.381-385
    • /
    • 2010
  • Poly(lactic acid)계 고분자의 기능화를 목적으로 곁사슬에 아미노기를 도입한 지방족 폴리에스테르를 합성하 고자 하며, N-$\varepsilon$-benzyloxy-carbonyl-L-lysine을 출발물질로 한 디에스테르 단량체 3-[(benzyloxycarbonylamino) butyl]-1,4-dioxane-2,5-dione(BABD)를 합성하였다. BABD와 L-lactide와의 공중합의 결과, PLLA 사슬에 BABD단위가 도입된 것이 확인되었으며 공중합체의 조성은 단량체의 첨가량에 따라 제어가 가능함을 알 수 있었다. 얻어진 폴리머는 $M_n$=3300 정도로 낮은 중합도를 나타내었으나 단량체의 정제 및 중합시 간의 검토에 의해 고분자량체의 생성이 가능함을 확인하였다. 곁사슬에 아미노기를 도입함에 의해 얻어진 폴리머는 친수성의 향상, 아미노기에 대한 화학수식 등에 의해 기능성의 부여가 기대된다.

이중 초음파 조사 시스템에서 진동부 사이의 거리가 초음파 화학 반응에 미치는 영향 (The Effect of Distance between Two Transducers on Sonochemical Reactions in Dual Irradiation Systems)

  • 김은경;손영규
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권5호
    • /
    • pp.39-45
    • /
    • 2013
  • Many researchers have studied the effectiveness of ultrasound in chemical and environmental engineering fields including material synthesis, pollutant removal, cleaning, extraction, and disinfection. Acoustic cavitation induced by ultrasound irradiation in aqueous phase can cause various sonophysical and sonochemical reactions without any chemicals. However most of the previous studies focused only on the relationships between ultrasonic conditions and the results of sonochemical reactions in lab-scale sonoreactors. As a results of this, only a few studies have been devoted to design and optimization of industrial scale sonoreactors. In this study, the effect of the distance between two opposite transducer modules on sonochemical reactions was investigated in single and dual irradiation systems (334 kHz) for four distances including 50, 100, 150, and 200 mm using KI dosimetry. It was found that the dual irradiation systems provided higher performance in terms of the zeroth reaction coefficient and the cavitation yield compared to the single irradiation systems. The sonochemiluminescence (SCL) images for the visualization of the cavitation field showed that cavitation active zone was larger and sonochemical reaction intensity was much higher in the dual irradiation system than in the single irradiation system.

Recent Progress on Sodium Vanadium Fluorophosphates for High Voltage Sodium-Ion Battery Application

  • Yuvaraj, Subramanian;Oh, Woong;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권1호
    • /
    • pp.1-13
    • /
    • 2019
  • Na-ion batteries are being considered as promising cost-effective energy storage devices for the future compared to Li-ion batteries owing to the crustal abundance of Na-ion. However, the large radius of the Na ion result in sluggish electrode kinetics that leads to poor electrochemical performance, which prohibits the use of these batteries in real time application. Therefore, identification and optimization of the anode, cathode, and electrolyte are essential for achieving high-performance Na-ion batteries. In this context, the current review discusses the suitable high-voltage cathode materials for Na-ion batteries. According to a recent research survey, sodium vanadium fluorophosphate (NVPF) compounds have been emphasized for use as a high-voltage Na-ion cathode material. Among the fluorophosphate groups, $Na_3V_2(PO_4)_2F_3$ exhibited the high theoretical capacity ($128mAh\;g^{-1}$) and working voltage (~3.9 V vs. $Na/Na^+$) compared to the other fluorophosphates and $Na_3V_2(PO_4)_3$. Here, we have also highlighted the classification of Fluorophosphates, NVPF composite with carbonaceous materials, the appropriate synthesis methods and how these methods can enhance the electrochemical performance. Finally, the recent developments in NVPF for the application in energy storage devices and its outlook are summarized.

Metabolic Engineering of Saccharomyces cerevisiae to Improve Glucan Biosynthesis

  • Zhou, Xing;He, Jing;Wang, Lingling;Wang, Yang;Du, Guocheng;Kang, Zhen
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권5호
    • /
    • pp.758-764
    • /
    • 2019
  • ${\beta}$-Glucan is a chief structural polymer in the cell wall of yeast. ${\beta}$-Glucan has attracted intensive attention because of its wide applications in health protection and cosmetic areas. In the present study, the ${\beta}$-glucan biosynthesis pathway in S. Cerevisiae was engineered to enhance ${\beta}$-glucan accumulation. A newly identified bacterial ${\beta}-1$, 6-glucan synthase GsmA from Mycoplasma agalactiae was expressed, and increased ${\beta}$-glucan content by 43%. In addition, other pathway enzymes were investigated to direct more metabolic flux towards the building of ${\beta}$-glucan chains. We found that overexpression of Pgm2 (phosphoglucomutase) and Rho1 (a GTPase for activating glucan synthesis) significantly increased ${\beta}$-glucan accumulation. After further optimization of culture conditions, the ${\beta}$-glucan content was increased by 53.1%. This study provides a new approach to enhance ${\beta}$-glucan biosynthesis in Saccharomyces cerevisiae.

금 입자 증착된 탄소나노튜브의 커패시턴스 증가 및 박막형 이온 선택성 전극으로서의 특성 평가 (Capacitance Enhancement and Evaluation of Gold-Deposited Carbon Nanotube Film Ion-Selective Electrode)

  • 김도연;손한별;임효령
    • 한국분말재료학회지
    • /
    • 제30권4호
    • /
    • pp.310-317
    • /
    • 2023
  • Small-film-type ion sensors are garnering considerable interest in the fields of wearable healthcare and home-based monitoring systems. The performance of these sensors primarily relies on electrode capacitance, often employing nanocomposite materials composed of nano- and sub-micrometer particles. Traditional techniques for enhancing capacitance involve the creation of nanoparticles on film electrodes, which require cost-intensive and complex chemical synthesis processes, followed by additional coating optimization. In this study, we introduce a simple one-step electrochemical method for fabricating gold nanoparticles on a carbon nanotube (Au NP-CNT) electrode surface through cyclic voltammetry deposition. Furthermore, we assess the improvement in capacitance by distinguishing between the electrical double-layer capacitance and diffusion-controlled capacitance, thereby clarifying the principles underpinning the material design. The Au NP-CNT electrode maintains its stability and sensitivity for up to 50 d, signifying its potential for advanced ion sensing. Additionally, integration with a mobile wireless data system highlights the versatility of the sensor for health applications.

Sm 첨가 F-free Y & Cu 전구용액의 합성 및 열처리 공정의 최적화 (Synthesis of F-free Y & Cu precursor solution and optimization of annealing process)

  • 김영국;유재무;정국채;고재웅
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권1호
    • /
    • pp.1-4
    • /
    • 2007
  • The total Fluorine content in the precursor solution for MOD processing of YBCO coated conductors can be significantly reduced by synthesizing precursor solution with F-free Y & Cu precursor and Barium trifluoroacetate(TFA). It was shown that crack-free and uniform precursor films were formed after calcinations in humidified oxygen atmosphere. Less than 2 hours are required to finish the calcinations process and XRD measurement shows that $BaF_2,\;CuO,\;Y_2O_3$ are major constituent of calcined precursor films. Film thickness after calcinations was improved to be 2.8um by applying slot-die coating method. In particular, addition of Samarium shows critical current of $I_c=273A/cm-w(J_c=3.8MA/cm^2)$. It is shown that uniform and fast processing route to YBCO coated conductor with high Ic can be provided by employing F-free Y & Cu precursor solution in MOD process.

Sucrose polyesters 합성에 사용하는 대두유 지방산 메틸에스테르 제조의 최적화 (Optimization of Soybean Oil Fatty Acid Methyl Esters Preparation for Sucrose Polyesters Synthesis)

  • 정하열;김석주;윤성우;윤희남;공운영
    • 한국식품과학회지
    • /
    • 제24권3호
    • /
    • pp.240-246
    • /
    • 1992
  • Sucrose polyesters(SPE)를 합성하기 위하여 사용할 대두유 지방산 메틸에스테르(soybean oil FAME)의 최적 제조방법을 조사하였다. Soybean oil FAME 중에 잔존하는 유리지방산(FFA)은 SPE 합성반응을 저해하므로 염기성 촉매에 의한 대두유의 트랜스에스테리피케이션(transesterification)반응을 최적화하기 위하여 soybean oil FAME의 수율 이외에 제조된 FAME 중의 유리지방산 함량을 측정하였다. Soybean oil FAME의 순도와 유리지방산 함량의 측정은 FAME 중의 유리지방산을 tert.-butyldimethylsilyl(TBDMS) 유도체로 전환시킨 후 FAME과 TBDMS 유도체를 개스 크로마토그래피에 의하여 동시 분석하였다. 서로 다른 반응조건에서 제조된 soybean oil FAME 중의 유리지방산 함량은 모두 0.1% 이하이었지만 일반적으로 저장기간이 지날수록 잔존 유리지방산 함량은 증가함으로 장기간 저장 후 잔존 유리지방산 함량의 측정에는 FAME/FFA-TBDMS 유도체의 동시분석법이 매우 효과적이었다. Soybean oil FAME은 염기성 촉매인 95% NaOH를 사용할 때 대두유와 무수 methanol의 반응당량비를 1 : 6으로 하고 반응온도를 $30^{\circ}C$로 하여 20분간 반응, 제조하는 것이 가장 적절하였다. 이러한 조건에서 대두유를 transesterification 시켜서 99.1%의 수율로 soybean oil FAME을 제조할 수 있었으며 FAME 중에 잔존하는 유리지방산 함량은 0.1% 이하여서 SPE 합성에 적절히 사용될 수 있었다.

  • PDF