• Title/Summary/Keyword: Synthesis optimization

Search Result 420, Processing Time 0.024 seconds

An Enhanced Genetic Algorithm for Global and Local Optimization Search (전역 및 국소 최적화탐색을 위한 향상된 유전 알고리듬의 제안)

  • Kim, Young-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1008-1015
    • /
    • 2002
  • This paper proposes a combinatorial method to compute the global and local solutions of optimization problem. The present hybrid algorithm is the synthesis of a genetic algorithm and a local concentrate search algorithm (simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm, but also gives a more accurate solution. In addition, this algorithm can find both the global and local optimum solutions. An optimization result is presented to demonstrate that the proposed approach successfully focuses on the advantages of global and local searches. Three numerical examples are also presented in this paper to compare with conventional methods.

Analytic Determination of 3D Grasping points Using Neural Network (신경망을 이용한 3차원 잡는 점들의 해석적 결정)

  • 이현기;한창우;이상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.112-117
    • /
    • 2003
  • This paper deals with the problem of synthesis of the 3-dimensional Grasp Planning. In previous studies the genetic algorithm has been used to find optimal grasping points, but it had a limitation such as the determination time of grasping points was so long. To overcome this limitation we proposed a new algorithm which employs the Neural Network. In the Neural network we chose input parameters based on the shape of the object and output parameters resulted from optimization with the GA method. In this study the GRNN method is employed, it has been trained by the result value of optimization method and it has been tested by known object. The algorithm is verified by computer simulation.

Optimization of Specific Film Thickness for a Disc Cam Using Genetic Algorithm (유전자 알고리즘을 이용한 원판 캠의 비 유막두께 최적화)

  • Kwon, Soon-Man;Kim, Chang-Hyun;Nam, Hyoung-Chul;Shin, Joong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.924-929
    • /
    • 2008
  • The rate of wear of cam followers in a valve train system is mainly a function of contact stress between the cam and the follower, sliding velocity and hydrodynamic film thickness between the two mating surfaces. The wear or surface fatigue can be reduced by maximizing the elastohydrodynamic film thickness. In this paper, an attempt has been made to estimate the optimal specific film thickness of cam-follower system quantitatively. A general TES polynomial function with real values of exponents is developed and genetic algorithm (GA) is used as optimization techniques for maximizing the minimum specific film thickness. The optimization programs enumerate values of the exponents for synthesis of cam displacement curves. The results show that the minimum film thickness can be increased considerably, e.g. approximately 7% in this paper.

A Study on Place and Route for FPGA using the Time Driven Optimization

  • Yi Myoung Hee;Yi Jae Young;Tsukiyama Shuji;Laszlo Szirmay
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.70-73
    • /
    • 2004
  • We have developed an optimization algorithm based formulation for performing efficient time driven simultaneous place and route for FPGAs. Field programmable gate array (FPGAs) provide of drastically reducing the turn-around time for digital ICs, with a relatively small degradation in performance. For a variety of application specific integrated circuit application, where time-to-market is most critical and the performance requirement do not mandate a custom or semicustom approach, FPGAs are an increasingly popular alternative. This has prompted a substantial amount of specialized synthesis and layout research focused on maximizing density, minimizing delay, and minimizing design time.

  • PDF

Optimization of Green Ammonia Production Facility Configuration in Australia for Import into Korea

  • Hyun-Chang Shin;Hak-Soo Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.269-276
    • /
    • 2024
  • Many countries across the world are making efforts beyond reducing CO2 levels and declaring 'net zero,' which aims to cut greenhouse gas emissions to zero by not emitting any carbon or capturing carbon, by 2050. Hydrogen is considered a key energy source to achieve carbon neutrality goals. Korean companies are also interested in building overseas green ammonia production plants and importing hydrogen into Korea in the form of ammonia. Green hydrogen production uses renewable energy sources such as solar and wind power, but the variability of power production poses challenges in plant design. Therefore, optimization of the configuration of a green ammonia production plant using renewable energy is expected to contribute as basic information for securing the economic feasibility of green ammonia production.

Optimum Design of a Viscous-driven Micropump with Single Rotating Cylinder for Maximizing Efficiency (고효율을 위한 단일 실린더를 가진 점성구동 마이크로펌프의 최적설계)

  • Choi, Hyung-Il;Kim, Jong-Min;Choi, Dong-Hoon;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1889-1896
    • /
    • 2003
  • In the microfluidic applications, viscous-driven pumping mechanism is a promising one since the viscous effect increases significantly as the size of device decreases, relative to the inertial effect. However, there exist a few drawbacks we have to improve such as low efficiency and small volume flow rate. In the present study, an optimum design synthesis is proposed to enhance the performance characteristics of the micropump with single rotating cylinder. First, the unstructured grid CFD method is described and validated by comparing its results to the previous results. Next, an automated optimum design synthesis tool is constructed by combining the aforementioned CFD analysis model with the mathematical optimization model. This technique is used to improve the performance characteristics of newly designed viscous-driven pump. The presented results show that the fluid dynamic optimization tool is robust and may be applied to other microfluidic device design applications.

An Optimization of Representation of Boolean Functions Using OPKFDD (OPKFDD를 이용한 불리안 함수 표현의 최적화)

  • Jung, Mi-Gyoung;Lee, Hyuck;Lee, Guee-Sang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.781-791
    • /
    • 1999
  • DD(Decision Diagrams) is an efficient operational data structure for an optimal expression of boolean functions. In a graph-based synthesis using DD, the goal of optimization decreases representation space for boolean functions. This paper represents boolean functions using OPKFDD(Ordered Pseudo-Kronecker Functional Decision Diagrams) for a graph-based synthesis and is based on the number of nodes as the criterion of DD size. For a property of OPKFDD that is able to select one of different decomposition types for each node, OPKFDD is variable in its size by the decomposition types selection of each node and input variable order. This paper proposes a method for generating OPKFDD efficiently from the current BDD(Binary Decision Diagram) Data structure and an algorithm for minimizing one. In the multiple output functions, the relations of each function affect the number of nodes of OPKFDD. Therefore this paper proposes a method to decide the input variable order considering the above cases. Experimental results of comparing with the current representation methods and the reordering methods for deciding input variable order are shown.

  • PDF

Simulation and Process Optimization of High Energetic Materials Demilitarization Facility Gas Treatment Process (고에너지물질 비군사화 시설의 후처리 공정 모사 및 열교환기 합성망을 이용한 에너지 최적화)

  • Hwang, Raymoon;Kim, Hyounsoo;Oh, Min;Moon, Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.79-83
    • /
    • 2021
  • The expiration date of high energetic materials(HEM), such as HMX, RDX, TNT, is important. If the expiration date is violated, the expected specification of HEM would not be satisfied which may cause a different conclusion in an urgent situation. As a result, this HEM should maintain fresh conditions which cause the accumulation of waste HEM. If HEM is landfilled during demilitarization, the impact on living organizations is serious. Additionally, landfilling HEM has a possibility of explosion. In this research, the process flow diagram of the demilitarization gas treatment process was simulated while satisfying the law of the environment in Korea. After validation of simulation, it was optimized thermodynamically using Heat Exchanger Network Synthesis(HENs). This study is expected to enhance the energy efficiency of the original facility by suggesting developed designs. This research was supported by Agency of Defense Development NE32 Korea. Thanks to Agency of Defense Development, Korea

Artificial neural fuzzy system and monitoring the process via IoT for optimization synthesis of nano-size polymeric chains

  • Hou, Shihao;Qiao, Luyu;Xing, Lumin
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.375-386
    • /
    • 2022
  • Synthesis of acrylate-based dispersion resins involves many parameters including temperature, ingredients concentrations, and rate of adding ingredients. Proper controlling of these parameters results in a uniform nano-size chain of polymer on one side and elimination of hazardous residual monomer on the other side. In this study, we aim to screen the process parameters via Internet of Things (IoT) to ensure that, first, the nano-size polymeric chains are in an acceptable range to acquire high adhesion property and second, the remaining hazardous substance concentration is under the minimum value for safety of public and personnel health. In this regard, a set of experiments is conducted to observe the influences of the process parameters on the size and dispersity of polymer chain and residual monomer concentration. The obtained dataset is further used to train an Adaptive Neural network Fuzzy Inference System (ANFIS) to achieve a model that predicts these two output parameters based on the input parameters. Finally, the ANFIS will return values to the automation system for further decisions on parameter adjustment or halting the process to preserve the health of the personnel and final product consumers as well.