A Study on Place and Route for FPGA using
the Time Driven Optimization

Yi, Myoung Hee™, Yi, Jae Young™, Shuji Tsukiyama™”, and Szirmay Laszlo
* Korea Power Exchange E-mail: yi3253 @kpx.or.kr
** Technical Univ. of Budapest, E-mail: yi_young @hotmail.com
**% Chuo University, Japan,
**** Technical Univ. of Budapest, Professor E-mail: szirmay@bme.iit.hu

Abstract:
We have developed an optimization algorithm based formulation for performing efficient time driven simultaneous
place and route for FPGAs. Field programmable gate array (FPGAs) provide of drastically reducing the turn-around
time for digital ICs, with a relatively small degradation in performance. For a variety of application specific
integrated circuit application, where time-to-market is most critical and the performance requirement do not mandate
a custom or semicustom approach, FPGAs are an increasingly popular alternative. This has prompted a substantial
amount of specialized synthesis and layout research focused on maximizing density, minimizing delay, and

minimizing design time.

v

Keywords: FPGA, Route, Time Driven, Optimization, wirability

1. INTRODUCTION

In recent year FPGAs have become an important
alternative technology to Mask Programmable Gate
Array(MPGA) due to their shorter design cycle,
reprogramability and low costs. FPGAs have found
increasing use in prototyping, emulation of large
ASICs, and in many low volume products. In general
their use has been limited to implementing random
logic with non critical timing requirements. FPGAs are
an exiting new approach to application specific
integrated circuits(ASICs) that drastically reduce the
time-to-market and also reduce the cost for low to
medium volume production. FPGAs have an array of
logic cells connected by a general routing structure,
like a MPGA, but they are programmable like PLDs.
The complexity of FPGAs has increased to the point
where automatic design tools are essential. However,
because the routing fabric, connection mechanisms
and timing issues are different for FPGAs, specialized
layout tools are required.[1]{2]

Exiting automated layout tools for FPGAs are
inherently sequential in nature with the placement,
global and detailed routing steps being distinct and
separate. There therefore suffer from the predictability
problem specific to FPGAa. Specifically, a placer
might bring together interconnected cells very close to
each other without realizing that the resuiting
placement is unroutable due to fixed routing to
resources and their specific connectivity. Also, paths
that look non-critical during the placement level might
become critical after routing. The reason is that it is
especially difficult to predict interconnect delays for
FPGAs during the placement process.[3][4] Simple
heuristic such as path's delay is proportional to its
length often do not work. Essentially, for FPGA, it is
very difficult to design a good wirability and timing
metric at the placement level.

While the ability to predict wirability and timing
behavior for FPGAs at the placement stage is very

70

difficult, it continues to be true that the ability to effect
a substantial charge in the wirability and timing
behavior is much greater at the placement stage
compared to the routing stage where the flexibility in
very much limited due to the already exiting
placement.

2. LAYOUT FLOW FOR FPGAS

FPGAs have fixed logic structures like MPGAs.
However, in addition, the routing resources are fixed.
The logic structure can be used for a large number of
functions. The fixed routing resources appear in the
form of a set of disjoint segments. In order to achieves
a particular circuit connectivity, there disjoint segment
can be connected where desired without having to go
through any time-consuming fabrication process.

The two kinds of FPGAs ,that our research targets,
are the now-based FPGAs and the island-stage FPGA.
The layout flow for now-based FPGAs is shown figure
1. Logic synthesis converts a high level circuit
description to a npetlist of generic cells. Technology
mapping then maps these generic logic elements onto
logic nodules there by creating a netlist of logic
module sized cells.[5] This netlist forms the input for
the placement phase. For row-based FPGAs, logic
modules can be of different types. The technology
mapper needs to comprehend this. At the placement
stage, cells are mapped auto valid logic module
locations. It is ensured that logic module types and the
mapped cell's type match. At this stage, the routing
resources information is absent. Therefore, the place
optimizes based on net-length minimization and
estimated congestion minimization criteria.[6] At the
global routing stage, feed through are assigned to nets
which need them.

In figure 1, for example, net needs a feed through and
this gets assigned at the global routing stage. Once the
global routing is done, the channel problems are

defined. At the detailed routing stage, the horizontal
routing resources or segments are assigned to net in
channels.[7]

T

el el ilalels AT EErE ey

T ¥ —rr R L R e LD I B S I e e

-.,_\'\
Y & & b, 'y i

T rr ¥ T YT + ++
— p—

N W 3 —5 & b & 1 Y 1

L § ¥ X ¥ - ¥ T ¥ L)
il -l dialalaialalal o bl B IIALIL
Y hl hIN AN L N A il DAL B I

Figure 1. Layout flow for row-based FPGAs.

The design flow for island-style FPGAs is shown in
Figure 2. As in the earlier case, the technology mapper
converts a high-level circuit description into a net-list
of I/O blocks and CLBs.{8] The placer’s job is similar
o the earlier case since the difference in these two
styles of FPGAs are primarily in their routing
resources. At the global routing stage, paths are
determined for every connection. Paths connect ports
of CLBs through connection and switch blocks. The
global router does not have any information regarding
of the contents of the connection switch blacks and
makes the path decisions based on estimated
congestion.

In figure 2, for example, the auto paths for the three-
terminal nets are found at the global routing stage. At
the detailed routing stage, explicit routing resources are
assigned to nets, i. e, the detailed router decides which
routing resources to use for a particular path of a net.

3. TIMING DRIVEN PRE-PLACEMENT

For the placement phase, existing placers

P

P! juin - CIRLTIT

P ELAPPTIUCG DEXIIPIION
Wet-Lat

GLOBAL BOUIRN

DEIXILED FOUY]

Figure 2. Layout flow for island-style FPGAs.

for gate-arrays and standard cells like timber wolfe
placement and routing package[9] are used with
modifications to suit the specific architecture. An
example of such a modification for row-based FP5As
where vertical routing resources are few, is to incrzase
the weight of the height of the bounding box of nets
while doing the bounding-box based optimization.

In this paper, we approached to timing drven
placement as follows ;

1) A sign wire length targets to each connection to
exploit the allowable slacks in each path du-ing
placement. We use a simplified version of the zero-
slack approach.

2) Arrive at a placement configuration that minim zes
the deviation from assigned wire lengths using a
simulated annealing based placement and glcbal
routing. The global routing for each net is preformed
using a single trunk steiner tree approximation. The
cost function minimized is ;

Cf = a*wl + B*Tp + y*Cp

wl : Total wire length

Tp : Total timing penalty which is computed as the
square of the wire length for each connection.

Cp : Total congestion penalty which is computed as
the square of the oversubscribed track resources “or
each channel segment associated with each LUT(Look
up Table).

We are a simple move set(i. e. displace and swip)
and a cooling schedule consisting of fixed number of
temperature.[9]

4. PRE-ROUTING PHASE

The two requirement of the routing phase are to
achieve 100% wirability and to meet the timing
requirements. Specific FPGA routing architectu-es
require correspondingly targeted routing algorithm. J.
Rose[6] considers routing for the segmented channel
architecture of row-based FPGAs. An additional
constraint for such architectures is that only one track
can be used for connection, i. e, no doglegs wre
allowed. In the connections[10] are sorted aad
processed according to their left-edge. At every
intermediate point, a frontier is maintained which
represents the tracks available and corresponds to a
particular selection of tracks for previous connections.
When processing the (i+1)™ connection, there could >e
L different frontiers depending on the selections maie
for the previous i connections. An exhaustive sear:h
would require updating the frontier by testing tie
(i+1)™ connection with all the L frontiers.

Although the general problem is NP-complete, the <-
segment problem can be attacked with efficient
dynamic programming techniques. In order to make
the run-time practical, heuristics can be used to pure
the frontier based on a wirability and timing driven
cost-function.

71

J. Rose[6] addresses the problem of routing for
inland-style architectures. The global routing here is
based on standard-cell global routing{11] which
assigns paths for connections so as to balance channel
densities. This is followed by a detailed routing which
uses the global routing solution to guide the
assignment of specific routing segments to
connections. Many paths for each connection are
explored concurrently via a search heuristic with an
intelligent pruning mechanism. At the end of the
search phase, multiple paths are determined for each
connection. The next phase selects a path from among
the alternatives. This is done using a cost function
which assigns a weight to a routing resource based on
the number of alternatives requiring it. This paper
includes timing and other wirability factor in the cost-
function. The path with the lowest cost or an essential
path is chosen and the updates are done to include the
effect of this selection. If a connection looses all its
alternatives, that past of the routing graph is re-
expanded. Also this paper addresses the timing issue
by incorporating pre-routing critical path/net
information in their cost-function and generally
minimizing the usage of antifuses/switches. To address
performance based routing more directly, J.
Frankly[12] attempts to iteratively improve the
performance by modifying the delay bounds on
connections which guide the router. For each
connection, a lower bound on delay is supplied. This
so-called “limit-bumping algorithm” reassign the
upper bounds of delays allowed on each connection 1.
e., the slacks allowed for the connections.

The reassignment is guided by the room that the
connections have for delay improvement based on the
derived delays with existing routing and the lower
bound. The router itself is essentially a cost-based
maze routes which router while attempting to respect
the delay bounds on the nets. This process of assigning
delay bounds and re-routing is continued till some
stopping criterion is net.

Simultaneous placement and routing techniques have
been explored for areas like custom analog cells.
However, for FPGAs, we are not aware of any
attempts to date exploring the utility of full
performance-driven, simultanecous placement and
global and detailed routing.

5. DETAILED ROUTING

The conventional channel is defined to be a
rectangular area with terminal rows along its top and
bottom sides. The main role of a channel router is to
connect the given terminals according to the net list
with minimum area. For over true decades, many
researchers have tied to solve various channel routing
problems. D. F. Wong([13]{14] presented a multi-large
channel router that transforms routing solutions from
existing two-layer routers. Recently, the concept of
over-the-call routing has been introduced to minimize
layout area. In over-the-call routing, the cell layout

72

area, as will as the channel area between two cell rows
is used a routing resource. Some heuristic have been
developed to achieve a 20% to 35% reduction in
channel height as compared to those for non-over- the-
call channel routers.[15] A recent algorithm yields as
much as a 65% reduction, in the channel height with a
triple-layer over-the- call router.

Routing algorithm in the study is developed for
generic row-based design structure. Hence, the
algorithm does not impose any strict constraints on the
cell structure or terminal positions. Also, this
algorithm allows both constrained and unconstrained
dogleg, while others only allow unconstrained ones.
The dogleg usage should comply with the design goal.
If compactness is the primary goal, both types should
be used. Such a sirategy enables us to apply the
algorithm to various design methodologies such as
custom cell-based systems as will as to standard cell-
based systems. This strategy, however, in creases the
problem complexity. Since it is very difficult to
optimize the usage of all resources in the over-the-cell
area at once, we divide the whole over-the-cell routing
problem into several subproblem and solve one at a
time for the optimal solution of each subproblem.

This algorithm is divided into piece steps :
1) Initial double-layer routing,

2) Track-to-metal 3 transformation,

3) Segment-to-meta 3 transformation,

4) Segment-to-meta 1 transformation,

5) Triple-layer channel routing.

The first and the last steps use conventional channel
routings. In the first step, we use a double-layer
channel routing to obtain a good seed for over-the-cell
routing. Many conventional double-layer channel
routers have been developed and used to produce
optimal solutions for most channel routing problems,
the conventional channel routers resolve cyclic
constraints between nets and give the track
assignment of each net. Thus, double-layer channel
routing provides a good starting point for the over-the-
cell routing. Obviously, the quality of our over-the-
cell routing is dependent on the result of the first step.

In the second step, the transformation is attempted
for each entice track. The transformation of tracks
always alleviates the routing difficulty in the most
congested section of channel routing obtained from
the first step. In the third and the fourth steps, every
horizontal segment is the operational object for the
transformation. Since the transformation of any
segment dose not necessarily yield the better results,
the segment selection is carefully done in order to
choose the best segment for the transformation. If all
over-the-cell tracks are occupied while there are still
some untransformed segments left in above steps, a
real channel is formed in the fifth step by the triple-
layer channel router.[16]

Detailed routing algorithm is :
for (all channels that net spans) {

(sx, sy) = Find span of net in channel
T=Find tracks free for span(sx,sy)

if (T==null) {

Net detailed unrouted in this channel ;
with next channel */

!

for (each T) |

Assignment coat =Ww?* segment_wastage + Wh
* antifuse_wastage

}

A sign net to track with minimum coat.

}

continue ; /*

6. CONCLUSION

A new triple-layer over-the-cell routing algorithm
was presented. For channel-less routing, defined virtual
channel and real channel to address the over-the-cell
routing problem precisely. A salient feature of our over-
the-cell routing is that on assumption has to be made on
the cell structure. Thus, it can be applied to any compact
layout using standard or customized cells.

We have created a new performance driven
simultaneous place and route algorithm for FPGAs.
We have described our overall strategy for
simultaneous place and route within on optimization
frame work. We have also described our chosen
optimization technique. We then described how the
placement and routing are incrementally perturbed to
achieve the desired layout meeting the wirability and
timing requirements.

References

[1] Meenakshi kaul, Ranga Vemuri, Seriram Govindrajan
and lyad Ouaiss, “An Automated Temporal Partitioning and
Loop Fission Approach for FPGA based Reconfigurable
Synthesis of DSP Application,” Proc. ADC 36th, pp.
616, June, 1998.

(2] Madhukar R. Korupoly, K. K. Lee, D. F. Wong, “Exact
Tree-based FPGA Technology Mapping for Logic
Blocks with Independent LuTs,” Proc. ADC 37th, pp. 708,
June, 1999.

[3] Xiaohan Zhu, Bill Lim, “Hardware Compilation for
FPGA-based Configurable Computing Machines,” Proc.
ADC 36th, pp. 697, June, 1998.

[4] Balakrishna Kumthekar, Luca Benini, Enrico Macii,
Fabio Somenzi, “In-Place Power Optimization for LuT-
based FPGAs,” Proc. ADC 37th, pp. 718, June, 1999.

[5] R. J. Francis, J. Rosc and Z. Vranesic, “Technoogy
mapping of look-up table based FPGA for performance,”
ICCAD, 1991.

[6] J. Cry, Y. Ding, “On Area/Depth trade off in LuT based
FPGA Technology Mapping,” IEEE. Trans. on VLSI
System, 1994.

[7] J. Greene, V. Roy chawdhury, S. Kaptanagln, A. El
Gamal, “Segmented Channel Routing,” Proc. of 27th
ACM/IEEE DAC, 1990.

[8] P. S. Sawkar and D. E. Thomas, “Performance Directed
Technology Mapping for Table-look-up based FPGAs,”
Proc. of 30th DAC, 1993.

[91 C. Sechen and A. Sangioranni-Vincentelli, “The
Placement and Routing Package,” IEEE J. of Solid-State
Circuits, Vol. 20, No. 2, 1985.

[10] S. Broun, J. Rose and Z. Vranesic, “A Detailed Ro iter
for FPGAs,” Proc. of ICCAD, 1990.

[111 J. Rose, “Parallel lobal Routing for Standard Ce'ls,”
[EEE Trans. on CAD, 1990.

[12] J. Frankle, “Iterative and adaptive slack allocation for
performance-driven layout and FPGA Routing,” Proc. of
DAC, 1992.

[13]J. Cony and C. L. Lic, “Over-the-Cell Channel routing,”
IEEE Trans. on CAD, Vol. 9, 1990.

[14] H. Yang, D. F. Wong, Edge-Map,“Optimnal
Performance driven Technology mapping for iterative Lut
based FPGA Design,” ICCAD, 1994.

[15] L. Chany, P. Hsiav, J. Yan, and P. Shew, “A robust
over-the-cell channel router,” IEEE Trans. on CAD, 1993,

{16] Supid Kumar Mag, “Performance-Driven Simultaneous
Place and Route for FPGAs,” Research Report No.
CMUCAD, 95-12, 1995.

73

