• Title/Summary/Keyword: Synthesis of thin film

Search Result 287, Processing Time 0.026 seconds

Development and Application of Group IV Transition Metal Oxide Precursors

  • Kim, Da Hye;Park, Bo Keun;Jeone, Dong Ju;Kim, Chang Gyoun;Son, Seung Uk;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.303.2-303.2
    • /
    • 2014
  • The oxides of group IV transition metals such as titanium, zirconium, hafnium have many important current and future application, including protective coatings, sensors and dielectric layers in thin film electroluminescent (TFEL) devices. Recently, group IV transition metal oxide films have been intensively investigated as replacements for SiO2. Due to high permittivities (k~14-25) compared with SiO2 (k~3.9), large band-gaps, large band offsets and high thermodynamic stability on silicon. Herein, we report the synthesis of new group IV transition metal complexes as useful precursors to deposit their oxide thin films using chemical vapor deposition technique. The complexes were characterized by FT-IR, 1H NMR, 13C NMR and thermogravimetric analysis (TGA). Newly synthesised compounds show high volatility and thermal stability, so we are trying to deposit metal oxide thin films using the complexes by Atomic Layer Deposition (ALD).

  • PDF

Synthesis of Chiral Poly(norbornene carboxylic acid ester)s and Their Characteristic Properties in The Thin Film

  • Byun, Gwang-Su;Lee, Taek-Joon;Jin, Kyeong-Sik;Ree, Moon-Hor;Kim, Sang-Youl;Cho, I-Whan
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.333-333
    • /
    • 2006
  • We synthesized two novel polynorbornene derivatives, chiral poly(norbornene acid methyl ester) (C-PNME) and racemic poly(norbornene acid n-butyl ester) (R-PNME), which are potential low dielectric constant materials for applications in advanced microelectronic and display devices. Thin films of these polymers deposited on substrates were investigated by structural analyses using synchrotron grazing incidence X-ray scattering, specular reflectivity and ellipsometry. These analyses provided important information on the structure, electron density gradient across film thickness, chain orientation, refractive index and thermal expansion of the polymers in substrate-supported thin films. The structural characteristics and properties of the thin films were first dependent on the polymer chain' tacticity and further influenced by film thickness and thermal annealing.

  • PDF

Nanopore Generation in Low Dielectric Organosilicate and SiCOH Thin Films

  • Heo, Kyu-Young;Yoon, Jin-Hwan;Jin, Kyeong-Sik;Jin, Sang-Woo;Oh, Kyoung-Suk;Choi, Chi-Kyu;Ree, Moon-Hor
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.298-298
    • /
    • 2006
  • There has been much interest in incorporating nanoscale voids into dielectric materials in order to reduce their k value, and thus in producing low-k porous interdielectric materials. One approach to the development of low-k dielectric materials is the templated polycondensation of organosilicate precursors in the presence of a thermally labile, organic polymeric porogen. The other is SiOCH films have low dielectric constant as well as good mechanical strength and high thermal stability through PECVD. In this article we explore the nanopore generation mechanism of organosilicate film using star-shape porogen and SiOCH film using bis-trimethylsilylmethane (BTMSM) precursor.

  • PDF

$Cu(In_{1-x}Ga_x)Se_2$ Thin Film Fabrication by Powder Process

  • Song, Bong-Geun;Cho, So-Hye;Jung, Jae-Hee;Bae, Gwi-Nam;Park, Hyung-Ho;Park, Jong-Ku
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.92-92
    • /
    • 2012
  • Chalcopyrite-type Cu(In,Ga)Se2 (CIGS) is one of the most attractive compound semiconductor materials for thin film solar cells. Among various approaches to prepare the CIGS thin film, the powder process offers an extremely simple and materials-efficient method. Here, we present the mechano-chemical synthesis of CIGS compound powders and their use as an ink material for screen-printing. During the synthesis process, milling time and speed were varied in the range of 10~600 min and 100~300 rpm, respectively. Both phase evolution and powder characteristics were carefully monitored by X-ray diffraction (XRD) method, scanning electron microscope (SEM) observation, and particle size analysis by scanning mobility particle spectrometer (SMPS) and aerodynamic particle sizer (APS). We found the optimal milling condition as 200 rpm for 120 min but also found that a monolithic phase of CIGS powders without severe particle aggregation was difficult to be obtained by the mechano-chemical milling alone. Therefore, the optimized milling condition was combined with an adequate heat-treatment (300oC for 60 min) to provide the monolithic CIGS powder of a single phase with affordable particle characteristics for the preparation of CIGS thin film. The powder was used to prepare an ink for screen printing with which dense CIGS thin films were fabricated under the controlled selenization. The morphology and electrical properties of the thin films were analyzed by SEM images and hall measurement, respectively.

  • PDF

Synthesis and characterization of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles

  • AL-Hobaib, A.S.;El Ghoul, Jaber;El Mir, Lassaad
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.309-321
    • /
    • 2015
  • We report in this study the synthesis of mixed matrix reverse osmosis membranes by interfacial polymerization (IP) of thin film nanocomposite (TFNC) on porous polysulfone supports (PS). This paper investigates the synthesis of ZnO nanoparticles (NPs) using the sol-gel processing technique and evaluates the performance of mixed matrix membranes reached by these aerogel NPs. Aqueous m-phenyl diamine (MPD) and organic trimesoyl chloride (TMC)-NPs mixture solutions were used in the IP process. The reaction of MPD and TMC at the interface of PS substrates resulted in the formation of the thin film composite (TFC). NPs of ZnO with a size of about 25 nm were used for the fabrication of the TFNC membranes. These membranes were characterized and evaluated in comparison with neat TFC ones. Their performances were evaluated based on the water permeability and salt rejection. Experimental results indicated that the NPs improved membrane performance under optimal concentration of NPs. By changing the content of the filler, better hydrophilicity was obtained; the contact angle was decreased from $74^{\circ}$ to $32^{\circ}$. Also, the permeate water flux was increased from 26 to 49 L/m2.h when the content of NPs is 0.1 (wt.%) with the maintaining of lower salt passage of 1%.

Effect of HF and Plasma Treated Glass Surface on Vapor Phase-Polymerized Poly(3,4-ethylenedioxythiophene) Thin Film : Part I

  • Lee, Joonwoo;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.211-214
    • /
    • 2013
  • In this study, in order to investigate how consecutive treatments of glass surface with HF acid and water vapor/Ar plasma affect the quality of 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM), poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were vapor phase-polymerized immediately after spin coating of FeCl3 and poly-urethane diol-mixed oxidant solution on the monolayer surfaces prepared at various treatment conditions. For the film characterization, various poweful tools were used, e.g., FE-SEM, an optical microscope, four point probe, and a contact angle analyzer. The characterization revealed that HF treatment is not desirable for the synthesis of a high quality PEDOT thin film via vapor phase polymerization method. Rather, sole treatment with plasma noticeably improved the quality of APS-SAM on glass surface. As a result, a highly dense and smooth PEDOT thin film was grown on uniform oxidant film-coated APS monolayer surface.

Synthesis and characterization of LiCoO2 thin film by sol-gel process (Sol-gel법에 의한 LiCoO2 박막의 합성과 특성평가)

  • Roh, Tae-Ho;Yon, Seog-Joo;Ko, Tae-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.94-98
    • /
    • 2014
  • $LiCoO_2$ thin film has received diverse attention as cathodes material of thin-film micro-batteries. In this study, $LiCoO_2$ thin films were synthesized on Au substrates by sol-gel spin coating method and an annealing process. Their structures were studied using X-ray diffraction and Raman Spectroscopy. The particle morphologies of these thin films were observed by Scaning electron microscope. From the results of X-ray diffractometry and Raman Spectroscopy analyses, it was found that as-grown films had the structure of spinel (LT-$LiCoO_2$) and layered-Rock-salt (HT-$LiCoO_2$) at $550^{\circ}C$ and $750^{\circ}C$ respectively. The annealed films at $650^{\circ}C$ were presumed to be the mixed state of these two types. Throlugh the scanning electron microscope, It was estimated that the particle size in as-grown films at $750^{\circ}C$, were larger crystilline particle than in those at the other lower temperature and well distributed in the film.

Solution-processed Dielectric and Quantum Dot Thin Films for Electronic and Photonic Applications

  • Jeong, Hyeon-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.37-37
    • /
    • 2010
  • Silicate-silsesquioxane or siloxane-silsesquioxane hybrid thin films are strong candidates as matrix materials for ultra low dielectric constant (low-k) thin films. We synthesized the silicate-silsesquioxane hybrid resins from tetraethoxyorthosilicate (TEOS) and methyltrimethoxysilane (MTMS) through hydrolysis and condensation polymerization by changing their molar ratios ([TEOS]:[MTMS] = 7:3, 5:5, and 3:7), spin-coating on Si(100) wafers. In the case of [TEOS]:[MTMS] 7:3, the dielectric permittivity value of the resultant thin film was measured at 4.30, exceeding that of the thermal oxide (3.9). This high value was thought to be due to Si-OH groups inside the film and more extensive studies were performed in terms of electronic, ionic, and orientational polarizations using Debye equation. The relationship between the mechanical properties and the synthetic conditions of the silicate-silsesquioxane precursors was also investigated. The synthetic conditions of the low-k films have to be chosen to meet both the low orientational polarization and high mechanical properties requirements. In addition, we have investigated a new solution-based approach to the synthesis of semiconducting chalcogenide films for use in thin-film transistor (TFT) devices, in an attempt to develop a simple and robust solution process for the synthesis of inorganic semiconductors. Our material design strategy is to use a sol-gel reaction to carry out the deposition of a spin-coated CdS film, which can then be converted to a xerogel material. These devices were found to exhibit n-channel TFT characteristics with an excellent field-effect mobility (a saturation mobility of ${\sim}\;48\;cm^2V^{-1}s^{-1}$) and low voltage operation (< 5 V). These results show that these semiconducting thin film materials can be used in low-cost and high-performance printable electronics.

  • PDF

Synthesis and Photoluminescence Characteristics of Zinc Gallate (ZnGa2O4) Thin Film Phosphors (Zinc Gallate (ZnGa2O4)박막 형광체의 합성과 발광특성)

  • Kim, Su-Youn;Yun, Young-Hoon;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.32-36
    • /
    • 2007
  • Zinc gallate $(ZnGa_2O_4)$ thin film phosphors have been formed on ITO glass substrates by a sol-gel spinning coating method. For the formation of the film phosphors, the starting materials of zinc acetate dihydrate, gallium nitrate hydrate and 2-methoxyethanol as a solution were used. The thin films deposited were firstly dried at $100^{\circ}C$ and fired at $500^{\circ}C\;or\;600^{\circ}C$ for 30 min and then, annealed $500^{\circ}C\;or\;600^{\circ}C$ at for 30 min under an annealing atmosphere of 3% $H_2/Ar$. The thin films deposited on ITO glass plates showed the (220), (222), (400), (422), (511), and (440) peaks of spinel structure as well as the (311) peak indicating a standard powder diffraction pattern. The surface morphologies of the thin film phosphors were observed with a firing and an annealing condition. The $ZnGa_2O_4$ film phosphors showed the blue emission spectra around 410 nm as well as the emission spectra in the UV region (360-380 nm).

Advances in oxide thin-film phosphors for field emission displays

  • Hao, J.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.263-267
    • /
    • 2006
  • Advances in non-sulfur-containing phosphors from low-temperature synthesis of thin-films suitable for glass substrates are discussed. The effects of preparation process on the properties of a variety of rare-earth-doped oxide hosts are reviewed. Cathodoluminescent characteristics have been studied to determine the usefulness of oxide thin-film phosphors in field emission displays.

  • PDF