• Title/Summary/Keyword: Syngas Production

Search Result 120, Processing Time 0.029 seconds

Syngas and Hydrogen Production from $CeO_2/ZrO_2$ coated Foam Devices under Simulated Solar Radiation (다공성 폼에 코팅된 $CeO_2/ZrO_2$ 를 이용한 고온 태양열 합성가스 및 수소 생산 연구)

  • Jang, Jong-Tak;Yoon, Ki-June;Han, Gui-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.260-266
    • /
    • 2012
  • Syngas and hydrogen from the $CeO_2/ZrO_2$ coated foam devices were investigated under simulated solar radiation. The $CeO_2/ZrO_2$ coated SiC, Ni and Cu foam device were prepared using drop-coating method. Syngas production step was performed at $900^{\circ}C$, and hydrogen production process was performed for ten repeated cycles to compare the CeO2 conversion in syngas production step, $H_2$ yield in hydrogen production step and cycle reproducibility. The produced syngas had the $H_2$/CO ratio of 2, which was suitable for methanol synthesis or Fischer-Tropsch synthesis process. In addition, syngas and hydrogen production process is one of the promising chemical pathway for storage and transportation of solar heat by converting solar energy to chemical energy. After ten cycles of redox reaction, the $CeO_2/ZrO_2$ was analyzed using XRD pattern and SEM image in order to characterize the physical and chemical change of metal oxide at the high temperature.

  • PDF

Operation Characteristics of Pilot-Scale Gasification System for Coal Syngas Production (석탄 합성가스 제조를 위한 pilot급 가스화 시스템 운전특성)

  • Chung, Seok-Woo;Jung, Woo-Hyun;Lee, Seung-Jong;Yun, Yong-Seung
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.90-97
    • /
    • 2007
  • Gasification has been regarded as a very important technology to decrease environmental pollution and to obtain higher efficiency. The coal gasification process converts carbon containing coal into a syngas, composed primarily of CO and $H_2$. And the coal syngas can be used as a source for power generation or chemical material production. This paper illustrates the opeartion characteristics and results of pilot-scale coal syngas production facilities. The entrained-bed pilot scale coal gasifier was operated normally in the temperature range of $1,300{\sim}1,400^{\circ}C,\;2{\sim}3kg/cm^2$ pressure. And Indonesian KPC coal produced syngas that has a composition of $46{\sim}54%\;CO,\;20{\sim}26%\;H_2,\;and\;5{\sim}8%\;CO_2$.

  • PDF

Operation Characteristics of Pilot-Scale Gasification System for Coal Syngas Production (석탄 합성가스 제조를 위한 pilot급 가스화 시스템 운전특성)

  • Chung, Seok-Woo;Jung, Woo-Hyun;Lee, Seung-Jong;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.429-432
    • /
    • 2007
  • Gasification has been regarded as a very important technology to decrease environmental pollution and to obtain higher efficiency, The coal gasification process converts carbon containing coal into a syngas, composed primarily of CO and $H_2$. And the coal syngas can be used as a source for power generation or chemical material production. This paper illustrates the operation characteristics and results of pilot-scale coal syngas production facilities. The entrained-bed pilot scale coal gasifier was operated normally in the temperature range of $1,300{\sim}1,400^{\cdot}C$, $2{\sim}3kg/cm^2$ pressure. And Indonesian KPC coal produced syngas that has a composition of $46{\sim}54$% CO, $20{\sim}26$% $H_2$, and $5{\sim}8$% $CO_2$.

  • PDF

Modification of an LPG Engine Generator for Biomass Syngas Application (바이오매스 합성가스 적용을 위한 LPG 엔진발전기 개조 및 성능평가)

  • Eliezel, Habineza;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.9-16
    • /
    • 2022
  • Syngas, also known as synthesis gas, synthetic gas, or producer gas, is a combustible gas mixture generated when organic material (biomass) is heated in a gasifier with a limited airflow at a high temperature and elevated pressure. The present research was aimed at modifying the existing LPG engine generator for fully operated syngas. During this study, the designed gasifier-powered woodchip biomass was used for syngas production to generate power. A 6.0 kW LPG engine generator was modified and tested for operation on syngas. In the experiments, syngas and LPG fuels were tested as test fuels. For syngas production, 3 kg of dry woodchips were fed and burnt into the designed downdraft gasifier. The gasifier was connected to a blower coupled with a slider to help the air supply and control the ignition. The convection cooling system was connected to the syngas flow pipe for cooling the hot produce gas and filtering the impurities. For engine modification, a customized T-shaped flexible air/fuel mixture control device was designed for adjusting the correct stoichiometric air-fuel ratio ranging between 1:1.1 and 1.3 to match the combustion needs of the engine. The composition of produced syngas was analyzed using a gas analyzer and its composition was; 13~15 %, 10.2~13 %, 4.1~4.5 %, and 11.9~14.6 % for CO, H2, CH4, and CO2 respectively with a heating value range of 4.12~5.01 MJ/Nm3. The maximum peak power output generated from syngas and LPG was recorded using a clamp-on power meter and found to be 3,689 watts and 5,001 watts, respectively. The results found from the experiment show that the LPG engine generator operated on syngas can be adopted with a de-ration rate of 73.78 % compared to its regular operating fuel.

Experimental Assessment of Biomass Gasification for Hydrogen Production (수소생산을 위한 바이오매스 가스화 반응의 실험적 고찰)

  • Hong, Seong Gu;Um, Byung Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.1-8
    • /
    • 2022
  • Hydrogen can be produced by gasification of biomass and other combustible fuels. Depending on oxydant agents, syngas or producer gas compositions become quite different. Since biomass has limited amount of hydrogen including moisture in it, the hydrogen concentration in the syngas is about 15% when air is supplied for oxidant agent. Experiments were conducted to investigate the channges in hydrogen concentrations in syngas with different oxidant agent conditions, fuel conditions, and external heat supply. Allothermal reaction resulted in higher concentrations of hydrogen with the supply of steam over air, reaching over 60%. Hydrogen is produced by water-gas and water-gas shift reactions. These reactions are endothermic and require enough heat. Autothermal reaction occurred in the downdraft gasifier used in the experiment did not provide enough heat in the reactions for hydrogen production. Steam seems a more desirable oxidant agent in producing the syngas with higher concentrations of hydrogen from biomass gasifications since nitrogen is included in syngas when air is used.

Syngas and Hydrogen Production under concentrated solar radiation : Redox system of $ZrO_2$ nano-structure (고온 태양열을 이용한 합성가스 및 수소 생산 : $ZrO_2$ 나노 구조화에 따른 산화/환원 특성)

  • Jang, Jong-Tak;Lee, Jong-Min;Cho, Eun-Su;Yang, Seung-Chan;Yoon, Ki-June;Han, Gui-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.463-469
    • /
    • 2012
  • Solar thermochemical syngas and hydrogen production process bv redox system of metal oxide was performed under direct irradiation of the metal oxide on the SiC ceramic foam device using solar simulator. $CeO_2/ZrO_2$ nanotube has been synthesized by anodic oxidation method. Syngas and hydrogen production process is one of the promising chemical pathway for storage and transportation of solar heat by converting solar energy to chemical energy. The produced syngas had the $H_2/CO$ ratio of 2, which was suitable for methanol synthesis or Fischer-Tropsch synthesis process. After ten cycles of redox reaction, $CeO_2$ was analyzed using XRD pattern and SEM image in order to characterize the physical and chemical change of metal oxide at the high temperature.

  • PDF

Research of Biofuel Syngas Production Using Superadiabatic Compression Spark Ignition Reformer (초단열 압축스파크 점화개질기를 이용한 바이오 합성가스 생산 연구)

  • Lim, Mun-Sup;Chun, Young-Nam
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.1
    • /
    • pp.42-49
    • /
    • 2010
  • Increasing environmental concerns regarding the use of fossil fuels and global wanning have prompted researcher to investigate alternative fuels. The purpose of this study is to investigate the syngas production by biogas reforming using a compression spark ignition engine. The parametric screening studies were carried out according to the variations of oxygen enrichment rate, biogas $CO_2$ ratio, intake gas temperature, and engine revolution. When the oxygen enrichment rate and input gas temperature increased, hydrogen and carbon monoxide were increased. But the biogas $CO_2$ ratio and engine revolution increased, the syngas were reduced. For the reforming of methane 100% only, generation of hydrogen and carbon monoxide was 58% and 17%, respectively. However when the biogas $CO_2$ ratio was 40%, hydrogen and carbon monoxide concentration were about 20% each.

Recent advances on bio-alcohol production from syngas using microorganisms (미생물을 이용한 합성가스로부터 바이오 알코올 생산 최신 동향)

  • Woo, Ji Eun;Jang, Yu-Sin
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.333-338
    • /
    • 2017
  • Cellulosic alcohol fermentation has recently gained more attention in the production of ethanol, butanol, and 2,3-butanediol. However, it was revealed that the process had several hurdles, such as, an expensive cost for biomass decomposition to yield fermentable sugars and a production of byproduct lignin. As an alternative for the process through biomass saccharification, the alcohol production through syngas from biomass has been studied. In this study, we reviewed acetogen and its central metabolic pathway, Wood-Ljungdahl route, capable of utilizing syngas. Furthermore, the metabolic engineering strategies of acetogen for bio-alcohol production from syngas was also reviewed with a brief perspective.

Operation Characteristics of Coal Syngas Production and DME Conversion Facilities (석탄 합성가스 제조 및 화학원료(DME) 전환설비의 운전 특성)

  • Chung, Seok-Woo;Kim, Mun-Hyun;Lee, Seung-Jong;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.83-86
    • /
    • 2006
  • In this study, the syngas producing facility that consists of pulverized coal feeding/gasification and hot gas clean-up system was tested for Indonesian subbituminous coal. And the DME conversion facilities have been developed and tested for converting syngas to DME by reactions with catalysts. So, the entrained-bed slagging type pi lot scale coal gasifier was operated normally in the temperature range of $1,400{\sim}1,450^{\circ}C,\;7{\sim}8kg/cm^2$ pressure. And Roto middle coal produced syngas that has a composition of $36{\sim}38%$ CO, $14{\sim}16%\;H_2,\;and\;5{\sim}8%\;CO_2$. Particulates in syngas were 99.8% removed by metal filters. $H_2S$ composition in syngas was also desulfurized by the Fe chelate system to yield less than 0.1 ppm level. When the clean syngas $70{\sim}100 Nm^3/h$ was provided to DME conversion rector, normally operated in the temperature range of $230{\sim}250^{\circ}C$ and $60kg/cm^2$ pressure, 4.5% DME was yielded.

  • PDF

Numerical Simulations on the Thermal Flow and Particle Behaviors in the Gas Reversal Chamber of a Syngas Cooler for IGCC (IGCC 합성가스 냉각기 GRC의 열유동 및 입자거동 특성에 대한 전산해석 연구)

  • Park, Sangbin;Ye, Insoo;Ryu, Changkook;Kim, Bongkeun
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • In the Shell coal gasification process, the syngas produced in a gasifier passes through a syngas cooler for steam production and temperature control for gas cleaning. Fly slag present in the syngas may cause major operational problems such as erosion, slagging, and corrosion, especially in the upper part of the syngas cooler (gas reversal chamber, GRC). This study investigates the flow, heat transfer and particle behaviors in the GRC for a 300 MWe IGCC process using computational fluid dynamics. Three operational loads of 100%, 75% and 50% were considered. The gas and particle flows directly impinged on the wall opposite to the syngas inlet, which may lead to erosion of the membrane wall. The heat transfer to the wall was mainly by convection which was larger on the side wall at the inlet level due to the expansion of the cross-section. In the evaporator below the GRC, the particles were concentrated more on the outer channels, which needs to be considered for alleviation of fouling and blockage.