• Title/Summary/Keyword: Syngas Cleaning

Search Result 14, Processing Time 0.021 seconds

Numerical simulations on flow and particle behaviors in the upper part of a syngas cooler for IGCC (IGCC 합성가스 냉각기 상부의 열유동 및 입자거동 특성에 대한 전산해석 연구)

  • Park, Sangbin;Ye, Insoo;Ryu, Changkook;Kim, Bongkeun
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.147-148
    • /
    • 2012
  • The syngas produced from coal gasification is cooled down for gas cleaning by a syngas cooler that produces steam. Due to the presence of fly slag in the syngas, erosion, slagging and corrosion especially in the upper part of the syngas cooler may cause major operational problems. This study investigates the flow, heat transfer and particle behaviors in the syngas cooler of a 300MWe IGCC plant by using computational fluid dynamics. For various operational loads and geometry, the gas and particle flows directly impinged on the wall opposite to the syngas inlet, which may lead to erosion of the membrane wall. In the evaporate channels inside the syngas cololr, the particle flows were concentrated more on the outer channel where slagging becomes more serious. The heat transfer to the wall was mainly by convection which was larger on the side wall below the inlet level.

  • PDF

Development of syngas supplying system for BTL (Biomass to Liquid) process (BTL(Biomass to Liquid) 공정을 위한 합성가스 공급 시스템 개발)

  • Kim, Y.D.;Kim, B.J.;Moon, J.H.;Lee, U.D.;Kim, K.S.;Yang, C.W.;Lee, J.W.;Lee, S.H.;Kim, J.H.;Lee, S.B.
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.223-226
    • /
    • 2012
  • Biomass to Liquid (BTL) is an attractive option for using biomass as an renewable energy. A syngas supplying system has been designed for BTL system, based on the Fischer-Tropsche (FT) process, and long-term operation test was conducted. The syngas supplying system is composed of a fluidized bed gasifier, gas cleaning and compression system, and methanol absorption system. Stable operation of more than hundred hours was achieved with several champaigns. In addition, a pilot scale biomass gasifier has been developed for 1 bbl/day BTL system and its performance was evaluated. Some preliminary results and current status of the development of BTL system will be presented.

  • PDF

An Experimental Study on the Operation of a Power Generation Engine with Syngas from RPF (폐기물 열분해 합성가스를 이용한 발전용 엔진구동에 대한 실험적 연구)

  • Jeong, Hyo-Jae;Lee, Jeong-Woo;Lee, Jae-Wook;Moon, Ji-Hong;Choi, In-Soo;Park, Sang-Shin;Hwang, Jung-Ho;Yu, Tae-U;Lee, Uen-Do
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.48-56
    • /
    • 2010
  • Performances of power generation engine were investigated with syngas from RPF. A stoker type, multi-staged pyrolysis-gasification system, was employed for syngas generation and the syngas was refined with the sequential cleaning processes composed of a gas cooler, a bag filter and a wet scrubber. 20 kWe commercial syngas power generation engine was adopted to burn the cleaned syngas which is mainly composed of hydrogen, carbon monoxide, carbon dioxide and methane. The performance of the engine was tested with various syngas compositions and the results were compared to LNG case. Electric power output, exhaust gas temperature, and emission characteristics were measured, and the efficiency of engine generation was investigated as a function of load of power generation.

Numerical Simulations on the Thermal Flow and Particle Behaviors in the Gas Reversal Chamber of a Syngas Cooler for IGCC (IGCC 합성가스 냉각기 GRC의 열유동 및 입자거동 특성에 대한 전산해석 연구)

  • Park, Sangbin;Ye, Insoo;Ryu, Changkook;Kim, Bongkeun
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • In the Shell coal gasification process, the syngas produced in a gasifier passes through a syngas cooler for steam production and temperature control for gas cleaning. Fly slag present in the syngas may cause major operational problems such as erosion, slagging, and corrosion, especially in the upper part of the syngas cooler (gas reversal chamber, GRC). This study investigates the flow, heat transfer and particle behaviors in the GRC for a 300 MWe IGCC process using computational fluid dynamics. Three operational loads of 100%, 75% and 50% were considered. The gas and particle flows directly impinged on the wall opposite to the syngas inlet, which may lead to erosion of the membrane wall. The heat transfer to the wall was mainly by convection which was larger on the side wall at the inlet level due to the expansion of the cross-section. In the evaporator below the GRC, the particles were concentrated more on the outer channels, which needs to be considered for alleviation of fouling and blockage.

Operating Characteristics of Pilot Scale Multi-Staged Waste Pyrolysis & Gasification System (파일럿 규모의 폐기물 다단열분해 가스화시스템의 운전특성)

  • Lee, Jeong-Woo;Yu, Tae-U;Bang, Byeong-Ryeol;Moon, Ji-Hong;Lee, Jae-Uk;Park, Sang-Shin;Kim, Nack-Joo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.331-335
    • /
    • 2009
  • A novel multi-staged waste pyrolysis & gasification system of pilot scale (~1 ton/day) is designed and constructed in Korea Institute of Industrial Technology. The pyrolysis & gasification system is composed of pyrolysis & gasification system, syngas reformer, syngas cleaning system, gas engine power generation system and co-combustion system. For each unit process, experimental approaches have been conducted to find optimal design and operating conditions. As a result, We can produce syngas with a calorific value of ~4000 kcal/$Nm^3$ and cold gas efficiency of the system is more than 55 % in case of waste plastic and oxygen as a gasifying agent.

  • PDF

Effect of Operating Pressure on the Heat Transfer and Particle Flow Characteristics in the Syngas Quench System of an IGCC Process (IGCC 합성가스 급속 냉각시스템의 운전 압력에 따른 열유동 및 입자 거동 특성 연구)

  • Park, Sangbin;Yang, Joohyang;Oh, Junho;Ye, In-Soo;Ryu, Changkook;Park, Sung Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.97-104
    • /
    • 2014
  • In a coal gasifier for IGCC, hot syngas leaving the gasifier at about 1550oC is rapidly quenched by cold syngas recycled from the gas cleaning process. This study investigated the flow and heat transfer characteristics in the gas quench system of a commercial IGCC process plant under different operating pressures. As the operating pressure increased from 30 bar to 50 bar, the reduced gas velocity shortened the hot syngas core. The hot fly slag particles were retained within the core more effectively, and the heat transfer became more intensive around the hot gas core under higher pressures. Despite the high particle concentrations, the wall erosion by particle impaction was estimated not significant. However, large particles became more stagnant in the transfer duct due to the reduced gas velocity and drag force under higher pressures.

Gasification Technology as Energy Utilization Platform of Biomass (바이오매스 활용 기반으로의 가스화 기술)

  • Lee, Jeung W.;Kim, Young D.;Yang, Chang W.;Kim, Kwang S.;Moon, Ji H.;Kim, Beom J.;Jeong, Jae Y.;Park, Ju H.;Park, Min S.;Lee, Uen D.
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.175-176
    • /
    • 2012
  • As a carbon neutral fuel, biomass can be converted into various types of high-valued products such as synthetic natural gas (SNG), Hydrogen, Fischer - Tropsch (FT) diesel. and valuable chemicals. In order to make above mentioned products, gasificaion process is essential as energy utilization platform of solid biomass. In this study, state of the art and prospect for biomass gasification technologies are presented.

  • PDF

Study on Design Factors of Methanol Synthesis Catalyst and Syngas Cleaning from Gasification of Municipal Solid Waste (도시폐기물 가스화공정에서 합성가스 세정 및 메탄을 합성촉매 설계인자에 관한 고찰)

  • 추수태;이계봉;유영돈;윤용승
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.633-638
    • /
    • 2003
  • 현재, 각종 산업공정에서 발생하는 부생가스, 도시폐기물, 폐플라스틱, 바이오매스 등의 미활용 에너지원이나 석탄, 폐유 등을 가스화 혹은 열분해 하여 합성가스를 발생시켜 재활용하려는 연구가 활발히 진행하고 있다. 합성가스는 공업적으로 중요한 에너지원 및 화합물을 제조하는 가장 기초적인 반응가스인데, 합성가스를 제조하는 방법 중 가장 잘 알려진 천연가스 개질반응 이외에도 열분해/가스화 반응공정을 통해 제조되기도 한다.(중략)

  • PDF

Operation Characteristic of Particulate Filtration System for High Temperature and Pressure Coal Syngas Cleaning (석탄 합성가스 정제를 위한 고온고압 집진시스템의 운전 특성)

  • Jung, Woohyun;Lee, Sun Ki;Lee, Seung Jong;Chung, Seok Woo;Yun, Yongseung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.132.2-132.2
    • /
    • 2010
  • 기후변화협약 등으로 인하여 기존 화력발전기술보다 효율이 높고 온실가스 발생을 줄일 수 있는 고효율 청정석탄 이용기술에 대한 사회적 요구가 높아짐에 따라 석탄 가스화와 관련된 기술 개발이 확대되고 있다. 석탄을 가스화하면 CO와 $H_2$가 주성분으로 구성된 합성가스를 얻을 수 있는데, 이를 청정가스연료로 사용하기 위해서는 합성가스에 포함된 분진의 제거가 필수적이다. 대부분의 석탄가스화 공정에서는 캔들형 필터를 사용한 여과식 집진시스템을 적용하여 합성가스에 포함된 분진을 제거하고 있다. 본 연구에서도 Pilot급 석탄 가스화기에서 제조된 합성가스에 포함된 분진 제거를 위하여 고온/고압 집진시스템을 구축하였으며, 다양한 운전조건과 필터 종류에 따른 집진시스템의 운전특성 파악을 수행하였다. 연구결과 석탄 합성가스를 안정적으로 정제 하기위한 집진시스템의 중요한 운전 기준과 방법을 도출할 수 있었으며, 이렇게 도출된 운전 기준과 방법은 용량이 증대된 집진시스템의 연속운전을 진행하여 향후 실증할 예정이다.

  • PDF

Performance of cyclone separator for syngas production in downdraft gasifier

  • Kumara, Sunil;Shukla, S.K.
    • Advances in Energy Research
    • /
    • v.4 no.3
    • /
    • pp.223-237
    • /
    • 2016
  • The excess use of conventional sources of energy by the industries and power sector result in acute shortage of energy produced by fossil fuel. To overcome this energy crisis, biomass feedstock is used to produce syngas or producer gas. For cleaning the dust particle present in the producer gas cyclone separators are largely used. In this paper we investigate the performance parameters of cyclone separator mainly efficiency and pressure drop for different feedstock. Cyclone performance has been evaluated based on experimentation and empirical approach using Leith and Licht model. The same has also been calculated by using turbulent RSM in Ansys Fluent for Wood and Coconut shell feedstock. Experimental results show that using feed stock with 10 % Calcium oxide (CaO) by weight, the efficiency of cyclone got reduced from 71.87% to 70.75% for wood feed stock, whereas in case of coconut shell, the cyclone efficiency got reduced from 78% to 73.44%. It is also seen that Leith and Licht model and Reynolds stress model (RMS) predicts very close to the particle collection efficiency evaluated by using experimental data.