• Title/Summary/Keyword: Synchronous Manufacturing

Search Result 63, Processing Time 0.025 seconds

A Study on the improvement of procurement logistics for synchronous manufacturing (동기화 생산을 위한 조달물류 개선에 관한 연구)

  • Yoo, Sung-Hee;Jang, Jung-Hwan;Zhang, Jing-Lun;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.261-267
    • /
    • 2013
  • In automobile company it is needed to establish the collaborative relationship between the assembly company and the part manufacturing company. In this paper we established the improvement for the procurement logistics and logistics in assembly company and thus we derived the near optimal procurement cycle through the simple EXCEL simulation and the improved inventory management method for H automobile company in CHINA. At this time we adopted the pull manufacturing process instead of push manufacturing process. We resulted that the manufacturing activity of both companies was stabilized and the usage of storage area in assembly company was reduced by 50%, especially it was reduced by 100% in the case of directly delivering the parts to assembly line through the third party logistics company.

A Study on Design and Performance Analysis of a Prototype Permanent Magnet Synchronous Generator (영구자석 동기발전기의 설계 및 시제품 특성 분석에 관한 연구)

  • Oh, Jin-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.75-80
    • /
    • 2014
  • The small wind turbines has the merits of setting up with low costs by individuals, and get the energy saving effects that, it has the secured, separate markets from the big range systems, and the developing of it is continuously proceeding. The objective of this paper is to provide the design characteristics analysis of a permanent magnet synchronous generator(PMSG) skewed for magnet of rotor, the main advantage to be explored with the use of a split core design is the reduction in manufacturing costs and its simplicity in manufacture, compared to the manufacturing costs of a core skew PM machine. This thesis is aiming mainly analyzing the characteristics of the prototype to verify through Finite Element Method(FEM) and tests.

Characteristic Analysis of Slotless-type Permanent Magnet Synchronous Motor by using Analytical Method (해석적인 방법에 의한 슬롯리스형 영구자석 동기전동기의 특성해석)

  • 강규홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.720-725
    • /
    • 2000
  • This paper persents the characteristic analysis method of slotless-type Permanent Magnet Synchronous Motor using the analytical method. The results of analysis are compered with FEM to verify the validity of the proposed method.

  • PDF

Linear Electric Motors in Machining Processes

  • Gieras, Jacek F.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.380-389
    • /
    • 2013
  • Application of linear electric motors to automation of manufacturing processes, gantry robots, machining processes, machining centers, additive manufacturing and laser scribing has been discussed. The paper focuses on replacement of ball lead screw mechanisms with linear electric motors, linear motor driven positioning stages, linear motor driven gantries, machining centers, machining of large objects and industrial lasers. The best linear electric motors for application to machining processes are permanent magnet (PM) linear synchronous motors (LSMs), especially those without PMs in the reaction tail, e.g., high thrust density linear (HDL) LSMs and PM flux switching (FS) LSMs.

Characteristic Analysis on the Permanent Magnet Synchronous Motor with Segmented Phase Modular Stators (고정자 분할에 따른 영구자석 동기전동기의 특성 해석)

  • Lee, Seung-Han;Cho, Han-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1686-1694
    • /
    • 2015
  • Stator tooth segmentation and back-iron segmentation is key solution to easing the burden of manufacturing process of permanent magnet synchronous motor. The purpose of this paper is the design and characteristic analysis of permanent magnet synchronous motor having the segmented phase modular stators. Using by two-dimensional finite element method, the static/no-load characteristic analysis of the permanent magnet synchronous motor is performed. The analysis has been performed considering the additional air gaps between stator modules. The analysis results were experimentally verified, and the validity of the proposed analysis method and feasibility of the machine was confirmed.

High Precision Position Synchronous Control in a Multi-Axes Driving System (다축 구동 시스템의 정밀 위치동기 제어(I))

  • Byun, Jung-Hoan;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.115-121
    • /
    • 1996
  • Multi-axes driving system is more suitable for FMS(Flexible Manufacturing System) compared with a conventional single-azis driving system. It has some merits such as flexibility in operation, improvement of net working rate, maintenance free because of no gear train, etc. However, studies on position synchronous control for high precision in the multi-axes driving system are not enough. In this paper, a new method of position synchronous control is suggested in order to apply to the multi- axes driving system. The proposed method is structured very simply using speed and position controller based on PID control law. Especially, the position controller is designed to keep position error to minimize by controlling either speed of two motors. The effectiveness of the proposed method is successfully confirmed through several experiments.

  • PDF

A New Type of CPPM Machine with Stator Axial Magnetic Ring

  • Xie, Kun;Li, Xinhua;Ma, Jimin;Wu, Xiaojiang;Yi, Hong;Hu, Gangyi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1285-1293
    • /
    • 2018
  • This paper proposes a new type of consequent-pole permanent-magnet (CPPM) machine with stator axial magnetic ring that increases torque capability over a wide speed range and enhances efficiency for the built-in rare-earth permanent magnet synchronous machine used in new energy vehicles. The excitation winding of the CPPM hybrid excitation synchronous machine in the stator is replaced by ferrite magnetic ring to simplify the structure and manufacturing process of the machine. The basic structure and magnetic regulation principle of the proposed machine are introduced and compared with the traditional interior rare-earth permanent magnet synchronous machine and CPPM hybrid excitation synchronous machine. Finally, experimental results of a new type of CPPM synchronous motor prototype with axial magnetic ring are introduced in the paper.

A Study on Comparison of Normal Force and Design Parameters in IPMSM(Interior Permanent Magnet Synchronous Motor) with Concentrated Winding according to Pole-Slot Combinations (극 수와 슬롯 수 조합에 따른 집중권 방식 매입형 영구자석 동기전동기의 Normal Forces 및 설계 파라미터의 비교에 관한 연구)

  • Ha, Seung-Hyonng;Kwon, Soon-O;Bahn, Ji-Hyung;Jung, Jae-Woo;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.765-766
    • /
    • 2006
  • Interior Permanent Magnet Synchronous Motor(IPMSM) have many advantages such as high power density, wide speed range and so on. With the IPMSM, miniaturization and energy efficient design can be achieved in comparison with Surface Permanent Magnet Synchronous Motor(SPMSM). In order to secure miniaturization and manufacturing efficiency of the motor, it has concentrated winding, because concentrated winding can reduce the motor volume and make manufacturing to be simple compared with the distributed winding. However, according to the pole-slot combinations motor parameters can be changed and unexpected normal force can be generated. Especially, unbalanced normal force in airgap can cause serious vibration and acoustic problem. Accordingly, in this paper, normal force and parameters variation of concentrated winding IPMSM are investigated according to the pole-slot combinations.

  • PDF

A Study on Synchronization Control Technique of Dual-Servo Press System (듀얼 서보모터 구동형 프레스 시스템의 동기화 제어기법 연구)

  • Na, Sang-Gun;Kwon, O-Shin;Kang, Jae-Hoon;Heo, Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.206-215
    • /
    • 2013
  • In this paper, a synchronization control technique of dual-servo motor driven press system is proposed. An independent cascade PID control technique has been applied to the conventional press system for advancement of control stability. However, it is not easy to reduce synchronous error using the independent cascade PID control technique when some different load disturbances are involved in each motor. The eccentric error of the slide caused by the problem degrade the control performance of the BDC(Bottom Dead Center). In order to achieve reduction of the synchronous error between two servo motors and accurate position control simultaneously, a new control scheme comprised with cascade PID control loop and cross-coupling loop is proposed. In simulation using Matlab SIMULINK, the AC servo system is designed. The control performance of proposed technique is compared with conventional control technique to the model of AC servo system. Also, the sub-scale model of dual-servo motor driven press system which can replicate the slide motion is constructed for experimental verification for the performance of the proposed control technique. The cross-coupling control technique reveals more precise and stable performances in the position and synchronization controls.

Real-Time Implementation of Brain Emotional Learning Developed for Digital Signal Processor-Based Interior Permanent Magnet Synchronous Motor Drive Systems

  • Sadeghi, Mohamad-Ali;Daryabeigi, Ehsan
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.74-81
    • /
    • 2014
  • In this study, a brain emotional learning-based intelligent controller (BELBIC) is developed for the speed control of an interior permanent magnet synchronous motor (IPMSM). A novel and simple model of the IPMSM drive structure is established with the intelligent control system, which controls motor speed accurately without the use of any conventional PI controllers and is independent of motor parameters. This study is conducted in both real time and simulation with a new control plant for a laboratory 3 ph, 3.8 Nm IPMSM digital signal processor (DSP)-based drive system. This DSP-based drive system is then compared with conventional BELBIC and an optimized conventional PI controller. Results show that the proposed method performs better than the other controllers and exhibits excellent control characteristics, such as fast response, simple implementation, and robustness with respect to disturbances and manufacturing imperfections.