• 제목/요약/키워드: Synchronous Controller

검색결과 652건 처리시간 0.022초

극배치에 의한 동기발전기의 전압제어기 설계 (Voltage Controller Design of Synchronous Generator by Pole Assignment)

  • Yim, Han-Suck
    • 대한전기학회논문지
    • /
    • 제34권12호
    • /
    • pp.472-484
    • /
    • 1985
  • A design of robust voltage controller for high speed excitation of synchronous machine was carried out by pole assignment techniques. An affine map from characteristic polynomial coefficients to feedback parameters is formulated in order to place the system eigen values in the desired region. The feedback parameters determined from linearized model are tested on nonlinear model subjecting it to small disturbances and system faults to show the effectiveness of the controller designed by the proposed technique. The results obtained indicate that the controller presented improves the dynamic stability and system performances of conventionally controlled synchronous machine significantly.

  • PDF

다축 구동 시스템의 정밀 위치동기 제어(I) (High Precision Position Synchronous Control in a Multi-Axes Driving System)

  • 변정환;정석권;양주호
    • 한국정밀공학회지
    • /
    • 제13권7호
    • /
    • pp.115-121
    • /
    • 1996
  • Multi-axes driving system is more suitable for FMS(Flexible Manufacturing System) compared with a conventional single-azis driving system. It has some merits such as flexibility in operation, improvement of net working rate, maintenance free because of no gear train, etc. However, studies on position synchronous control for high precision in the multi-axes driving system are not enough. In this paper, a new method of position synchronous control is suggested in order to apply to the multi- axes driving system. The proposed method is structured very simply using speed and position controller based on PID control law. Especially, the position controller is designed to keep position error to minimize by controlling either speed of two motors. The effectiveness of the proposed method is successfully confirmed through several experiments.

  • PDF

커플링구조에 기초한 전기추진시스템의 동기제어에 관한 연구 (A Study on The Synchronous Control of Dual Electric Propulsion System Based on the Coupling Structure)

  • 양경욱;변정환
    • 한국전자통신학회논문지
    • /
    • 제13권2호
    • /
    • pp.349-356
    • /
    • 2018
  • 본 연구에서는 무인선, 어군탐지선 등의 듀얼 전기추진시스템에서 두 프로펠러 간에 발생되는 속도 차, 즉 동기오차를 억제하기 위한 동기제어시스템이 설계된다. 이 제어시스템은 각 추진시스템에 대한 예비필터와 속도제어기 그리고 추진시스템 간에 교차 결합된 동기제어기로 구성된다. 예비필터와 속도제어기는 추진시스템이 오버슈트와 입력포화 없이 속도지령을 추종하도록 설계된다. 그리고 동기제어기는 비대칭 외란과 동특성 불일치가 동기오차에 미치는 영향을 분석한 후, 동기제어시스템의 감쇠성과 속응성을 고려하여 설계된다. 끝으로, 시뮬레이션을 통해 설계된 제어시스템이 동기오차의 제거에 효과적임을 보여준다.

계자코일 파라메터추정 기법을 이용한 동기발전기의 성능개선 (Performance Improvement of Synchronous Generator using Exciter Control with Field Coils Parameter Estimation Technique)

  • 강성현;박성미;이화춘;박성준
    • 조명전기설비학회논문지
    • /
    • 제27권4호
    • /
    • pp.31-40
    • /
    • 2013
  • This paper proposes a performance improvement of synchronous generator using exciter control with field coils parameter estimation technique. In general, the generator excitation system controller uses the PID controller. When the Field winding impedance changed, the PID gains must be changed. General method is difficult to apply varying capacity of the synchronous generator. The proposed control method determine automatically measure the internal impedance of the synchronous generator's exciter and configure the controller. This method can be applied regardless of the generator capacity. So it is possible to apply a variety of synchronous generator systems. The validity of the proposed algorithm is verified by simulations and experiments.

퍼지 PI를 이용한 배수갑문용 유압실린더의 위치 및 동기 제어기 설계 (Synchronous Position Controller Design of Hydraulic Cylinders for a Sluice Gate Using Fuzzy PI)

  • 최병재
    • 한국정보전자통신기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.117-120
    • /
    • 2014
  • 수문 제어의 주요기술은 두 개의 실린더가 하나의 수문을 동시에 10[m] 이상 들어 올리는 행정 동안 정밀하게 제어되도록 하여 동기 작동 시키는 것이다. 실린더에 공급되는 유량 및 압력이 일정하지 않으며, 실린더 피스톤의 비선형적인 마찰력에 의해 두 개의 실린더 위치 오차가 발생하게 되면 수문의 개폐 시 비틀림 현상을 야기 시켜서 수문의 마모를 발생시키고, 수문의 개폐작동 불능 현상을 마들기도 한다. 배수갑문용 유압실린더의 위치 및 동기 제어기를 설계하기 위하여 fuzzy PI 제어기를 이용하여 두 개의 실린더의 위치 및 동기 제어기를 설계하고, 시뮬레이션을 통해 효용성을 제시한다.

비대칭외란을 고려한 2축 전동실린더의 동기제어에 관한 연구 (A Study on the Synchronous Control of Two Motor Cylinders with Skew Disturbance)

  • 변정환
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.129-136
    • /
    • 2009
  • A motor cylinder is widely used as an apparatus for transportation of a small scale load. It is, however, difficult for only one motor cylinder to transfer a large scale load such as a weir. The large scale load is transferred by two motor cylinders which are mounted on right and left of load itself. In this case, the displacement difference generated between two motor cylinders, namely, the synchronous error has a bad influence on the transportation. In this study, a synchronous control system is designed to restrain synchronous error caused by skew disturbance. The control system is composed of two disturbance observers and one synchronous controller. Each disturbance observer is designed to restrain the skew disturbance. And the synchronous controller is designed to achieve stable and accurate synchronization. Finally, the simulation results show that the designed control system is effective for the skew disturbance which lead to synchronous error.

  • PDF

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim Kyeong-Hwa;Youn Myung-Joong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.174-178
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet (PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator, the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF, resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim, Kyeong-Hwa;Young, Myung-Joong
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.88-98
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet(PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF., resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

하모닉 드라이브를 가진 DC 서보 모터의 비선형 제어기와 동기 운전에 관한 연구 (A Study on Nonlinear Controller of DC Servo-motors with Harmonic Drive Gearing and Its Synchronous Operation)

  • 김연태;최정원;홍동기;이석규
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.60-70
    • /
    • 1998
  • A harmonic drive is compact torque transmission device with no backlash which is widely applied in industrial field to transmit torque precisely. However, one of the disadvantages of harmonic drives is the existence of mechanical flexibility caused by its structural properties, which imposes great limitation on designing precise controller This paper proposes a nonlinear controller for synchronous operation of DC servo-motors with harmonic drive, using Integrator Backstepping method. Furthermore, an alternative algorithm for serial type synchronous operation of multiple DC servo-motors is proposed. Simulation results by SIMULINK for proposed controller shows considerably small error and rapid approach to reference input, which can be adapted to industrial applications.

  • PDF

가변속 풍력 발전용 영구자석형 동기발전기의 SDRE 기반 준최적 비선형 제어기 설계 (SDRE Based Near Optimal Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System)

  • 박형무;최한호
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.28-33
    • /
    • 2015
  • In this paper, we propose a near optimal controller design method for permanent magnet synchronous generators (PMSGs) of MW-class direct-driven wind turbine systems based on SDRE (State Dependent Riccati Equation) approach. Using the solution matrix of an SDRE, we parameterize the optimal controller gain. We present a simple algorithm to compute the near optimal controller gain. The proposed optimal controller can enable PMSGs to precisely track the reference speed determined by the MPPT algorithm. Finally, numerical simulation results are given to verify the effectiveness of the proposed optimal controller.