• Title/Summary/Keyword: Synchronous Control

Search Result 1,730, Processing Time 0.028 seconds

A Study on the High Performance PWM Technique for a Propulsion System of Railway (철도차량용 추진제어장치의 고능률 PWM기법에 관한 연구)

  • Min, Byoung-Gwon;Seo, Kwang-Duk;Won, Chung-Yuen
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.10
    • /
    • pp.186-192
    • /
    • 1998
  • This paper presents a high performance low switching PWM technique or the propulsion system of railway such as subway and high speed train. In order to achieve the continuous voltage control to six-step and s low harmonics with low switching frequency under 500Hz, the synchronous technique is combined with a space vector overmodulation and implemented by using DSP. Improved performance and a validation of proposed method are showed by the digital simulation and the experimental results using a 1.65MVA IGBT VVVF inverter and inertia load equivalent to 160 tons railway cars.

  • PDF

Instantaneous Voltage Sag Corrector Controller Design of Power Line System (전력선 계통의 순시 전압 강하 제어기 설계)

  • Lee, Sang-Hoon;Hong, Hyun-Mun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.6-11
    • /
    • 2006
  • This paper describes the novel control techniques design of VSC(Voltage Sag Corrector) for the purpose of power line quality enhancement. A fast detecting technique of voltage sag is implemented through the detection of instantaneous value on synchronous rotating dq-reference frame. The first order digital filter is added in the detection algorithm to protect the insensitive characteristics against the noise. The relationship between the total detection time and cut-off frequency of the filter is described. The size of the capacitor bank used as the energy storage element is designed from the point of view of input/output energy with circuit analysis. Finally, the validity of the proposed scheme is proven through the simulated results.

Current Limit Strategy of Voltage Controller of Delta-Connected H-Bridge STATCOM under Unbalanced Voltage Drop

  • Son, Gum Tae;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.550-558
    • /
    • 2018
  • This paper presents the current limit strategy of voltage controller of delta-connected H-bridge static synchronous compensator (STATCOM) under an unbalanced voltage fault event. When phase to ground fault happens, the feasibility to heighten the magnitude of sagging phase voltage is considered by using symmetric transformation method in delta-structure STATCOM. And the efficiency to cover the maximum physical current limit of switching device is considered by using vector analysis method that calculate the zero sequence current for balancing the cluster energy in delta connected H-bridge STATCOM. The result is simple and obvious. Only positive sequence current has to be used to support the unbalanced voltage sag. Although the relationship between combination of the negative sequence voltage with current and zero sequence current is nonlinear, the more negative sequence current is supplying, the larger zero sequence current is required. From the full-model STATCOM system simulation, zero sequence current demand is identified according to a ratio of positive and negative sequence compensating current. When only positive sequence current support voltage sag, the least zero sequence current is needed.

Enhancement of Cell Voltage Balancing Control by Zero Sequence Current Injection in a Cascaded H-Bridge STATCOM (STATCOM에서 영상분 전류주입에 의한 셀간 전압평형화 제어의 향상)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.321-329
    • /
    • 2015
  • The static synchronous compensator (STATCOM) of cascaded H-bridge configuration accompanying multiple separate DC sides is inherently subject to the problem of uneven DC voltages. These DC voltages in one leg can be controlled by adjusting the AC-side output voltage of each cell inverter, which is proportional to the active power. However, when the phase current is extremely small, large AC-side voltage is required to generate the active power to balance the cell voltages. In this study, an alternative zero-sequence current injection method is proposed, which facilitates effective cell balancing controllers at no load, and has no effect on the power grid because the injected zero sequence current only flows within the STATCOM delta circuit. The performance of the proposed method is verified through simulation and experiments.

A Study on Current Harmonics Reduction and Unbalanced Source Voltage Compensation Using Series Active Power Filter and Parallel Passive Filter (직렬 능동전력필터와 병렬 수동필터를 이용한 고조파 전류 저감 및 불평형 전원 전압 보상에 관한 연구)

  • Oh, Jae-Hoon;Ko, Su-Hyun;Han, Yoon-Seok;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.196-199
    • /
    • 2001
  • This paper deals with current harmonics and unbalanced source voltages compensation using combined filter system. Filter system consists of a series active filter and parallel passive filters. Passive filters were a traditional method to compensate current harmonics, so those were installed in power system widely. The active filter can be a substitution to improve filtering characteristics and complement drawbacks of the passive filter. The combined system of the active power filter and passive filter can has a better compensation performances and economical goods. The series type active power filter injects compensation voltage into power system by transformers. It's compensation principle is able to applicate for voltage compensation. A new control algorithm for series active filter to compensate current harmonics and unbalanced source voltages is proposed. In the proposed algorithm, a compensation voltage for harmonic reduction is calculated directly by instantaneous reactive power theory, and a compensation voltage for unbalanced source voltage is calculated in based on a synchronous reference frame. By experiments, we show validity of proposed compensation method.

  • PDF

Improvement of PLL Method for Voltage Control of Dynamic Voltage Restorer (동적전압보상기의 전압제어를 위한 PLL 방식의 개선)

  • Kim, Byong-Seob;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.936-943
    • /
    • 2009
  • Dynamic voltage restorer(DVR) is now more preferable enhancement than other power quality enhancement in industry to reduce the impact of voltage faults, especially voltage sags to sensitive loads. The main controllers for DVR consists of PLL(phase locked loop), compensation voltage calculator and voltage compensator. PLL detects the voltage faults and phase. Compensation voltage calculator calculates the reference voltage from the source voltage and phase. With calculated compensation voltage from PLL, voltage compensator restores the source voltage. If PLL detect ideal phase, compensation voltage calculator calculates ideal compensation voltage. Therefore, PLL for DVR is very important. This paper proposes the new method of PLL in DVR. First, the power circuit of DVR system is analyzed in order to compensate the voltage sags. Based on the analysis, new PLL for improving transient response of DVR is proposed. The proposed method uses band rejection filter(BRF) at q-axis in synchronous flame. In order to calculate compensation voltage in commercial instruments, the PQR theory is used. Proposed PLL method is demonstrated through simulation using Matlab-Simulink and experiment, and by checking load voltage, confirms operation of the DVR

Implementation of Recursive DSP Algorithms Based on an Optimal Multiprocessor Scheduler (최적 멀티프로세서 스케줄러를 이용한 재귀 DSP 알고리듬의 구현)

  • Kim Hyeong-Kyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.228-234
    • /
    • 2006
  • This paper describes a systematic process which can generate a complete circuit specification efficiently for a given recursive DSP algorithm based on an optimal multiprocessor scheduler. The process is composed of two states: scheduling and circuit synthesis. The scheduling part accepts a fully specified flow graph(FSFG) as an input, and generates an optimal synchronous multiprocessor schedule. Then the circuit synthesis part translates the modified schedule into a complete circuit diagram including a control specification. The circuit diagram can be applied to a silicon compiler for VLSI layout generation. This paper illustrates the whole process with an example of a second order Gray-Market lattice filter.

Utililty-Interfaced High-Frequency Flyback Transformer Linked Sinewave Pulse Modulated Inverter for a Small Scale Renewable Energy Conditioner

  • Chandhaket, Srawouth;Koninish, Yoshihiro;Nakaoka, Mutsou
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.112-123
    • /
    • 2002
  • This paper presents a novel prototype of the utility AC power interfaced soft-switching sinewave pulse modulated inverter using the high-frequency flyback for the small scale distributed renewable energy power conditioner. The proposed cricuit with a high-frequency isolation link has a funtion of electrical isolation, which is more cost-effective and reliable for the small-scale distributed renwal energy utilization system from a safety point of riew. The discontinuous conduction mode(DCM) operation of the high-frequency flyback transformer is adopted to establish a simple and low-cost circuit configuration and control scheme. For the simplicity, the circuit operating principle is described on the basis of the modified conventional full bridge inverter, whitch is the typical conventional high-frequency full-bridge inverter employing the high requency flyback transformer to eanble the effictive function of the electrical isolation. Than, the new circuit topology of the unility-interfaced soft-switching sinewave pulse modulated inverter using IGBTs is proposed. The proposed cricuit topology is additionally composed of the auxiliary power regenerating snubber cricuits, which are also mathematically analyzed for the parameter desigen settings. Finally, the performance of the propose inverter is evaluated on the basis of computer-aid simulation. It is noted that the sinewave pulse modulated output current of the inverter is synchronous to the AC main voltage.

Control Strategy for Three-Phase Grid-Connected Converters under Unbalanced and Distorted Grid Voltages Using Composite Observers

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.469-478
    • /
    • 2013
  • This paper proposes a novel scheme for the current controller for the grid-side converter (GSC) of permanent-magnet synchronous generator (PMSG) wind turbines to eliminate the high-order harmonics in the grid currents under grid voltage disturbances. The voltage unbalance and harmonics in three-phase systems cause grid current distortions. In order to mitigate the input current distortions, multi-loop current controllers are applied, where the positive-sequence component is regulated by proportional-integral (PI) controllers, and the negative-sequence and high-order harmonic components are regulated by proportional-resonance (PR) controllers. For extracting the positive/negative-sequence and harmonic components of the grid voltages and currents without a phase delay or magnitude reduction, composite observers are applied, which give faster and more precise estimation results. In addition, an active damping method using PR controllers to damp the grid current component of the resonant frequency is employed to improve the operating stability of VSCs with inductor-capacitor-inductor (LCL) filters. The validity of the proposed method is verified by simulation and experimental results.

Design of Permanent Magnet Type Wind Power Generators for Cogging Torque Reduction with Optimum Pole Arc Pitch Ratio (코깅토크 저감을 위한 최적 극호비를 갖는 영구자석형 풍력발전기의 설계)

  • Jang, Seok-Myeong;Kim, Jin-Soon;Ko, Kyoung-Jin;Choi, Jang-Young;Yoon, Gi-Gab
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.38-40
    • /
    • 2009
  • In order to achieve a gearless construction of the wind energy conversion system(WECS), a low-speed generator should be used. Of the various candidate machine types, radial-field, multi-pole, permanent magnet, synchronous machines may be used for low-speed applications. So, this paper deals with the design of direct-coupled, multi-pole radial field machines with permanent magnet(PM) excitation for wind power applications for cogging torque reduction through the determination of optimum pole arc/pitch ratio. On the basis of an equivalent magnetic circuit method(EMCM) and a space harmonic method(SHM), an initial design is performed considering restricted conditions. And then, a detailed design is made using a non-linear finite element analyses(FEA). Finally, test results concerning generating characteristics are given to confirm the validation of the design.

  • PDF