• Title/Summary/Keyword: Synchronization Tracking

Search Result 118, Processing Time 0.024 seconds

On Addressing Network Synchronization in Object Tracking with Multi-modal Sensors

  • Jung, Sang-Kil;Lee, Jin-Seok;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.4
    • /
    • pp.344-365
    • /
    • 2009
  • The performance of a tracking system is greatly increased if multiple types of sensors are combined to achieve the objective of the tracking instead of relying on single type of sensor. To conduct the multi-modal tracking, we have previously developed a multi-modal sensor-based tracking model where acoustic sensors mainly track the objects and visual sensors compensate the tracking errors [1]. In this paper, we find a network synchronization problem appearing in the developed tracking system. The problem is caused by the different location and traffic characteristics of multi-modal sensors and non-synchronized arrival of the captured sensor data at a processing server. To effectively deliver the sensor data, we propose a time-based packet aggregation algorithm where the acoustic sensor data are aggregated based on the sampling time and sent to the server. The delivered acoustic sensor data is then compensated by visual images to correct the tracking errors and such a compensation process improves the tracking accuracy in ideal case. However, in real situations, the tracking improvement from visual compensation can be severely degraded due to the aforementioned network synchronization problem, the impact of which is analyzed by simulations in this paper. To resolve the network synchronization problem, we differentiate the service level of sensor traffic based on Weight Round Robin (WRR) scheduling at the routers. The weighting factor allocated to each queue is calculated by a proposed Delay-based Weight Allocation (DWA) algorithm. From the simulations, we show the traffic differentiation model can mitigate the non-synchronization of sensor data. Finally, we analyze expected traffic behaviors of the tracking system in terms of acoustic sampling interval and visual image size.

A Study on the Implementation of a High Speed Synchronization Circuit Applied in Frequency Hopping FSK Tranceiver (주파수 도약 통신방식 FSK 송수신기의 고속동기회로 구현에 관한 연구)

  • 이준호;전동근;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.1
    • /
    • pp.38-46
    • /
    • 1992
  • In this thesis, a high speed code synchronization circuit is implemented, which is applicable to frequency hopping FSK tranceiver within 68-88 MIBz band- width. synchronization Process consists of two steps, initial synchronization and tracking. A modified matched filter method using two channel passive correlators matched with short hopping frequencies, synchronization prcfix. is proposed for initial synchronization. To increase probability of initial synchronization, prefix are transmitted repeatedly. The outputs of correlators are sent to synchronization decision circuit, and code start time Is extracted by synchronizatlon decision circuit-Modified matched fitter method makes it possible to reduce complexity in hardware and obtain code acquisition rapidly.Clock recovery circuit regenerates PN code clock for tracking.

  • PDF

A Synchronization Tracking Algorithm to Compensate the Drift of Satellite in FH-FDMA Satellite Communication System (FH-FDMA 위성 통신 시스템에서 위성 드리프트 보정 동기추적 알고리즘)

  • Bae, Suk-Neung;Kim, Su-Il;Choi, Young-Kyun;Jin, Byoung-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.159-166
    • /
    • 2008
  • In this paper, we proposed an algorithm to solve the problem that can't maintain hop synchronization using only early-late gate tracking loop due to the drift of geo-stationary satellite in frequency hopping satellite communication system. When the signal is transferred to downlink through DRT(Dehop-Rebop Transponder), the problem with synchronization loss is occurred periodically when using only early-late gate tracking loop, because of energy loss in each side portion of hop due to orbital variation of the satellite. To solve this problem, we have developed Anti-Shrink synchronization tracking algorithm which uses the prediction value of transmission timing and the structure of inner-outer gate instead of early-late gate with the ranging information. Through simulations, we showed that the performance of the Anti-Shrink algorithm is better than that of simple inner-outer energy ratio algorithm and similar to that of conventional early-late tracking loop algorithm with ranging information. No synchronization failure in the proposed algorithm was occurred because of less energy loss and robustness without the ranging information.

Synchronization Error-based Control Approach for an Industrial High-speed Parallel Robot (다축 동기 제어 방법 기반의 산업용 고속 병렬로봇 제어)

  • Do, Hyun Min;Kim, Byung In;Park, Chanhun;Kyung, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.354-361
    • /
    • 2016
  • Parallel robots are usually used for performing pick-and-place motion to increase productivity in high-speed environments. The present study proposes a high-speed parallel robot and a control approach to improve the tracking performance for the purpose of handling a solar cell. However, the target processes are not limited to the solar cell-handling field. Therefore, a delta-type parallel manipulator is designed, and a ball joint structure is specifically proposed to increase the allowed angle that would meet the required workspace. A control algorithm considering the synchronization between multiple joints in a closed-chain mechanism is also suggested to improve the tracking performance, where the tracking and synchronization errors are simultaneously considered. In addition, a prototype machine with the proposed ball joint is implemented. A satisfactory tracking performance is achieved by applying the proposed control algorithm, with a cycle time of 0.3 s for a 0.1 kg payload.

Maximum-Power-Point Tracking Using Multiphase Interleaved Converters Based on Multi-Unit Synchronization

  • Jantharamin, Niphat;Thongbuaban, Ponlawat
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.88-92
    • /
    • 2014
  • This paper presents an application of a multiphase interleaved converter in tracking maximum power points (MPPs) of a photovoltaic (PV) panel regardless of environmental variations. Maximum power from the panel was extracted by means of the well-known the perturb-and-observe (P&O) method. The switching control technique used an interleaving scheme based on multi-unit synchronization. The converter performed harmonic attenuation without affecting the tracking speed. This approach is straightforward, reliable and inexpensive, and could be applied to any higher number of switching cells without difficulty.

The Propose of WAVE System Synchronization Algorithm Based on OFDM (OFDM 기반 WAVE 시스템 동기알고리즘 제안)

  • Oh, Se-Kab;Ryu, Ki-Hee;Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.4
    • /
    • pp.341-349
    • /
    • 2008
  • In this paper the Coefficient Tracking Synchronization Algorithm is proposed for the compensation and the suitability of the fast channel fluctuation OFDM in the WAVE(Wireless Access in Vehicular Environments) system. The in progress of standardization WAVE process, IEEE802.11p's physical layer is considered on the coexistence of fading and Frequency offset of OFDM channel to find the system performance ability and the comparing examination which is taken on the proposed method of Coefficient Tracking Synchronization Algorithm and the performance efficiency. Through the simulation result we also can see that the proposed system improves the channel estimation ability and offers an extra efficiency if compared to the existing method.

  • PDF

A Novel Scheme for Code Tracking Bias Mitigation in Band-Limited Global Navigation Satellite Systems (위성 기반 측위 시스템에서의 부호 추적편이 완화 기법)

  • Yoo, Seung-Soo;Kim, Sang-Hun;Yoon, Seok-Ho;Song, Iich-Ho;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.1032-1041
    • /
    • 2007
  • The global navigation satellite system (GNSS), which is the core technique for the location based service, adopts the direct sequence/spread spectrum (DS/SS) as its modulation method. The success of a DS/SS system depends on the synchronization between the received and locally generated pseudo noise (PN) signals. As a step in the synchronization process, the tacking scheme performs fine adjustment to bring the phase difference between the two PN signals to zero. The most widely used tracking scheme is the delay locked loop with early minus late discriminator (EL-DLL). In the ideal case, the EL-DLL is the best estimator among various DLL. However, in the band-limited multipath environment, the EL-DLL has tracking bias. In this paper, the timing offset range of correlation function is divided into advanced offset range (AOR) and delayed offset range (DOR) centering around the correct synchronization time point. The tracking bias results from the following two reasons: symmetry distortion between correlation values in AOR and DOR, and mismatch between the time point corresponding to the maximum correlation value and the synchronization time point. The former and latter are named as the type I and type II tracking bias, respectively. In this paper, when the receiver has finite bandwidth in the presence of multipath signals, it is shown that the type II tracking bias becomes a more dominant error factor than the type I tracking bias, and the correlation values in AOR are not almost changed. Exploiting these characteristics, we propose a novel tracking bias mitigation scheme and demonstrate that the tracking accuracy of the proposed scheme is higher than that of the conventional scheme, both in the presence and absence of noise.

A High-Speed Synchronization Method Robust to the Effect of Initial SFO in DRM Systems (DRM 시스템에서 초기 샘플링 주파수 옵셋의 영향에 강인한 고속 동기화 방식)

  • Kwon, Ki-Won;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.73-81
    • /
    • 2012
  • In this paper, we propose a high-speed synchronization method for Digital Radio Mondiale (DRM) receivers. In order to satisfy the high-speed synchronization requirement of DRM receivers, the proposed method eliminate the initial sampling frequency synchronization process in conventional synchronization methods. In the proposed method, sampling frequency tracking is performed after integer frequency synchronization and frame synchronization. Different correlation algorithms are applied to detect the first frame of the Orthogonal Frequency Division Multiplexing (OFDM) demodulation symbol with sampling frequency offset (SFO). A frame detection algorithm that is robust to SFO is selected based on the performance analysis and simulation. Simulation results show that the proposed method reduces the time spent for initial sampling frequency synchronization even if SFO is present in the DRM signal. In addition, it is verify that inter-cell differential correlation used between reference cells is roubst to the effect of initial SFO.

Design of Doppler-Frequency Tracking System based on the Optimum Synchronization Techniques for the Digital Satellite Communication System (최적 동기방식에 의한 디지틀 위성통신 시스템의 도플러 위상 추적 장치 설계)

  • 최재익;박진우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2498-2507
    • /
    • 1994
  • This paper proposes the Doppler frequency tracking system by the optimum synchronization technique which compensates the frequency shifts caused by satellite movement in a coherent digital satellite communication system. A Doppler frequency shift caused by satellite movements and the design theories of the optimum synchronization system are mathematically described. Based on this theory, a Doppler frequency tracking system is implemented via digital signal processing techniques utilizing a DSP chip, RAMs, PROMs, and a 80286 microprocessor. The performance of the designed system was evaluated through the experiments with the INTELSATVA satellite.

  • PDF

Performance of PN Code Synchronization with Extended Kalman Filter for a Direct-Sequence Spread-Spectrum System (직접시퀀스 확산대역 시스템을 위한 Extended Kalman Filter 기반의 PN 부호 동기화 성능)

  • Kim, Jin-Young;Yang, Jae-Soo
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.3
    • /
    • pp.107-110
    • /
    • 2009
  • In this paper, a PN code tracking loop with extended Kalman filter (EKF) is proposed for a direct-sequence spread-spectrum. EKF is used to estimate amplitude and delay in a multipath. fading channel. It is shown that tracking error performance is significantly improved by EKF compared with a conventional tracking loop.

  • PDF