• Title/Summary/Keyword: Symmetric functions

Search Result 234, Processing Time 0.019 seconds

ON FUNCTIONS STARLIKE WITH RESPECT TO n-PLY SYMMETRIC, CONJUGATE AND SYMMETRIC CONJUGATE POINTS

  • Malik, Somya;Ravichandran, Vaithiyanathan
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.1025-1039
    • /
    • 2022
  • For given non-negative real numbers 𝛼k with ∑mk=1 𝛼k = 1 and normalized analytic functions fk, k = 1, …, m, defined on the open unit disc, let the functions F and Fn be defined by F(z) := ∑mk=1 𝛼kfk(z), and Fn(z) := n-1n-1j=0 e-2j𝜋i/nF(e2j𝜋i/nz). This paper studies the functions fk satisfying the subordination zf'k(z)/Fn(z) ≺ h(z), where the function h is a convex univalent function with positive real part. We also consider the analogues of the classes of starlike functions with respect to symmetric, conjugate, and symmetric conjugate points. Inclusion and convolution results are proved for these and related classes. Our classes generalize several well-known classes and the connections with the previous works are indicated.

A FEW RESULTS ON JANOWSKI FUNCTIONS ASSOCIATED WITH k-SYMMETRIC POINTS

  • Al Sarari, Fuad S;Latha, Sridhar;Darus, Maslina
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.389-403
    • /
    • 2017
  • The purpose of the present paper is to introduce and study new subclasses of analytic functions which generalize the classes of Janowski functions with respect to k-symmetric points. We also study certain interesting properties like covering theorem, convolution condition, neighborhood results and argument theorem.

Initial Maclaurin Coefficient Bounds for New Subclasses of Analytic and m-Fold Symmetric Bi-Univalent Functions Defined by a Linear Combination

  • Srivastava, Hari M.;Wanas, Abbas Kareem
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.493-503
    • /
    • 2019
  • In the present investigation, we define two new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination in the open unit disk U. Furthermore, for functions in each of the subclasses introduced here, we establish upper bounds for the initial coefficients ${\mid}a_{m+1}{\mid}$ and ${\mid}a_{2m+1}{\mid}$. Also, we indicate certain special cases for our results.

LARGE SCHRÖDER PATHS BY TYPES AND SYMMETRIC FUNCTIONS

  • An, Su Hyung;Eu, Sen-Peng;Kim, Sangwook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1229-1240
    • /
    • 2014
  • In this paper we provide three results involving large Schr$\ddot{o}$der paths. First, we enumerate the number of large Schr$\ddot{o}$der paths by type. Second, we prove that these numbers are the coefficients of a certain symmetric function defined on the staircase skew shape when expanded in elementary symmetric functions. Finally we define a symmetric function on a Fuss path associated with its low valleys and prove that when expanded in elementary symmetric functions the indices are running over the types of all Schr$\ddot{o}$der paths. These results extend their counterparts of Kreweras and Armstrong-Eu on Dyck paths respectively.

On the Weight and Nonlinearity of Quadratic Rotation Symmetric Boolean Functions (회전대칭 이차 불함수의 해밍무게 및 비선형성)

  • Kim, Hyeon-Jin;Jung, Chang-Ho;Park, Il-Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.2
    • /
    • pp.23-30
    • /
    • 2009
  • Recently, rotation symmetric Boolean functions have attracted attention since they are suitable for fast evaluation and show good cryptographic properties. For example, important problems in coding theory were settled by searching the desired functions in the rotation symmetric function space. Moreover, they are applied to designing fast hashing algorithms. On the other hand, for some homogeneous rotation symmetric quadratic functions of simple structure, the exact formulas for their Hamming weights and nonlinearity were found[2,8]. Very recently, more formulations were carried out for much broader class of the functions[6]. In this paper, we make a further improvement by deriving the formula for the Hamming weight of quadratic rotation symmetric functions containing linear terms.

A CERTAIN SUBCLASS OF JANOWSKI TYPE FUNCTIONS ASSOCIATED WITH κ-SYMMETRIC POINTS

  • Kwon, Ohsang;Sim, Youngjae
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.143-154
    • /
    • 2013
  • We introduce a subclass $S_s^{({\kappa})}$(A,B) (-1 ${\leq}$ B < A ${\leq}$ 1) of functions which are analytic in the open unit disk and close-to-convex with respect to ${\kappa}$-symmetric points. We give some coefficient inequalities, integral representations and invariance properties of functions belonging to this class.

NEW THEOREM ON SYMMETRIC FUNCTIONS AND THEIR APPLICATIONS ON SOME (p, q)-NUMBERS

  • SABA, N.;BOUSSAYOUD, A.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.243-257
    • /
    • 2022
  • In this paper, we present and prove an new theorem on symmetric functions. By using this theorem, we derive some new generating functions of the products of (p, q)-Fibonacci numbers, (p, q)-Lucas numbers, (p, q)-Pell numbers, (p, q)-Pell Lucas numbers, (p, q)-Jacobsthal numbers and (p, q)-Jacobsthal Lucas numbers with Chebyshev polynomials of the first kind.

THE FEKETE-SZEGÖ COEFFICIENT INEQUALITY FOR A NEW CLASS OF m-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS SATISFYING SUBORDINATION CONDITION

  • Akgul, Arzu
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.733-748
    • /
    • 2018
  • In this paper, we investigate a new subclass $S^{{\varphi},{\lambda}}_{{\Sigma}_m}$ of ${\Sigma}_m$ consisting of analytic and m-fold symmetric bi-univalent functions satisfying subordination in the open unit disk U. We consider the Fekete-$Szeg{\ddot{o}}$ inequalities for this class. Also, we establish estimates for the coefficients for this subclass and several related classes are also considered and connections to earlier known results are made.

GEOMETRIC PROPERTIES ON (j, k)-SYMMETRIC FUNCTIONS RELATED TO STARLIKE AND CONVEX FUNCTION

  • Gochhayat, Priyabrat;Prajapati, Anuja
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.455-472
    • /
    • 2022
  • For j = 0, 1, 2,…, k - 1; k ≥ 2; and - 1 ≤ B < A ≤ 1, we have introduced the functions classes denoted by ST[j,k](A, B) and K[j,k](A, B), respectively, called the generalized (j, k)-symmetric starlike and convex functions. We first proved the sharp bounds on |f(z)| and |f'(z)|. Various radii related problems, such as radius of (j, k)-symmetric starlikeness, convexity, strongly starlikeness and parabolic starlikeness are determined. The quantity |a23 - a5|, which provide the initial bound on Zalcman functional is obtained for the functions in the family ST[j,k]. Furthermore, the sharp pre-Schwarzian norm is also established for the case when f is a member of K[j,k](α) for all 0 ≤ α < 1.