SYMMETRIC PROPERTIES FOR GENERALIZED TWISTED q-EULER ZETA FUNCTIONS AND q-EULER POLYNOMIALS

N.S. JUNG AND C.S. RYOO*

Abstract

In this paper we give some symmetric property of the generalized twisted q-Euler zeta functions and q-Euler polynomials.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80. Key words and phrases : generalized twisted q-Euler numbers and polynomials, generalized twisted q-Euler zeta function, symmetric property, power sum.

1. Introduction

The Euler numbers and polynomials possess many interesting properties in many areas of mathematics and physics. Many mathematicians have studied in the area of various q-extensions of Euler polynomials and numbers (see [111]). Recently, Y. Hu investigated several identities of symmetry for Carlitz's q-Bernoulli numbers and polynomials in complex field (see [3]). D. Kim et al. [4] derived some identities of symmetry for Carlitz's q-Euler numbers and polynomials in complex field. J.Y. Kang and C.S. Ryoo studied some identities of symmetry for q-Genocchi polynomials (see [2]). In [1], we obtained some identities of symmetry for Carlitz's twisted q-Euler zeta function in complex field. In this paper, we establish some interesting symmetric identities for generalized twisted q-Euler zeta functions and generalized] twisted q-Euler polynomials in complex field. If we take $\chi=1$ in all equations of this article, then [1] are the special case of our results. Throughout this paper we use the following notations. By \mathbb{N} we denote the set of natural numbers, \mathbb{Z} denotes the ring of rational integers, \mathbb{Q} denotes the field of rational numbers, \mathbb{C} denotes the set of complex numbers, and $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$. We use the following notation:

$$
[x]_{q}=\frac{1-q^{x}}{1-q} \quad(\text { see }[1,2,3,4])
$$

[^0]Note that $\lim _{q \rightarrow 1}[x]=x$. We assume that $q \in \mathbb{C}$ with $|q|<1$. Let r be a positive integer, and let ε be the r-th root of unity. Let χ be Dirichlet's character with conductor $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$. Then the generalized twisted q Euler polynomials associated with associated with $\chi, E_{n, \chi, q, \varepsilon}$, are defined by the following generating function

$$
\begin{equation*}
F_{\chi, q, \varepsilon}(t, x)=[2]_{q} \sum_{n=0}^{\infty}(-1)^{n} q^{n} \varepsilon^{n} \chi(n) e^{[x+n]_{q} t}=\sum_{n=0}^{\infty} E_{n, \chi, q, \varepsilon}(x) \frac{t^{n}}{n!} \tag{1.1}
\end{equation*}
$$

and their values at $x=0$ are called the generalized twisted q-Euler numbers and denoted $E_{n, \chi, q, \varepsilon}$.

By (1.1) and Cauchy product, we obtain

$$
\begin{equation*}
E_{n, \chi, q, \varepsilon}(x)=\sum_{l=0}^{n}\binom{n}{l} q^{l x}[x]_{q}^{n-l} E_{l, \chi, q, \varepsilon} \tag{1.2}
\end{equation*}
$$

with the usual convention about replacing $\left(E_{\chi, q, \varepsilon}\right)^{n}$ by $E_{n, \chi, q, \varepsilon}$.
By using (1.1), we note that

$$
\begin{equation*}
\left.\frac{d^{k}}{d t^{k}} F_{\chi, q, \varepsilon}(t, x)\right|_{t=0}=[2]_{q} \sum_{n=0}^{\infty} \chi(n)(-1)^{n} \varepsilon^{n} q^{n}[n+x]_{q}^{k},(k \in \mathbb{N}) \tag{1.3}
\end{equation*}
$$

By (1.3), we are now ready to define the Hurwitz type of the generalized twisted q-Euler zeta functions.

Definition 1.1. Let $s \in \mathbb{C}$ and $x \in \mathbb{R}$ with $x \neq 0,-1,-2, \ldots$. We define

$$
\begin{equation*}
\zeta_{\chi, q, \varepsilon}(s, x)=[2]_{q} \sum_{n=1}^{\infty} \frac{(-1)^{n} \chi(n) \varepsilon^{n} q^{n}}{[n+x]_{q}^{s}} \tag{1.4}
\end{equation*}
$$

Note that $\zeta_{\chi, q, \varepsilon}(s, x)$ is a meromorphic function on \mathbb{C}. Relation between $\zeta_{\chi, q, \varepsilon}(s, x)$ and $E_{k, \chi, q, \varepsilon}(x)$ is given by the following theorem.

Theorem 1.2. For $k \in \mathbb{N}$, we get

$$
\begin{equation*}
\zeta_{\chi, q, \varepsilon}(-k, x)=E_{k, \chi, q, \varepsilon}(x) \tag{1.5}
\end{equation*}
$$

Observe that $\zeta_{\chi, q, \varepsilon}(-k, x)$ function interpolates $E_{k, \chi, q, \varepsilon}(x)$ polynomials at non-negative integers. If $\chi=1$, then $\zeta_{\chi, q, \varepsilon}(s, x)=\zeta_{q, \varepsilon}(s, x)$ (see [1]).

2. Symmetric property of generalized twisted q-Euler zeta functions

In this section, by using the similar method of $[1,2,3,4,9]$, expect for obvious modifications, we give some symmetric identities for generalized twisted q-Euler polynomials and generalized twisted q-Euler zeta functions. Let $w_{1}, w_{2} \in \mathbb{N}$ with $w_{1} \equiv 1(\bmod 2), w_{2} \equiv 1(\bmod 2)$.

Theorem 2.1. Let χ be Dirichlet's character with conductor $d \in \mathbb{N}$ with $d \equiv$ $1(\bmod 2)$ and ε be the r-th root of unity. For $w_{1}, w_{2} \in \mathbb{N}$ with $w_{1} \equiv 1(\bmod 2)$, $w_{2} \equiv 1(\bmod 2)$, we obtain

$$
\begin{aligned}
& \sum_{i=0}^{w_{2} d-1}[2]_{q^{w_{1}}}\left[w_{1}\right]_{q}^{s}(-1)^{i} \chi(i) \varepsilon^{w_{1} i} q^{w_{1} i} \zeta_{\chi, q^{w_{2}, \varepsilon^{w_{2}}}}\left(s, w_{1} x+\frac{w_{1}}{w_{2}} i\right) \\
& =\sum_{j=0}^{w_{1} d-1}[2]_{q^{w_{2}}}\left[w_{2}\right]_{q}^{s}(-1)^{j} \chi(j) \varepsilon^{w_{2} j} q^{w_{2} j} \zeta_{\chi, q^{w_{1}}, \varepsilon^{w_{1}}}\left(s, w_{2} x+\frac{w_{1}}{w_{2}} j\right) .
\end{aligned}
$$

Proof. Observe that $[x y]_{q}=[x]_{q^{y}}[y]_{q}$ for any $x, y \in \mathbb{C}$. In Definition 1.1, we derive next result by substitute $w_{1} x+\frac{w_{1}}{w_{2}} i$ for x in and replace q and ε by $q^{w_{2}}$ and $\varepsilon^{w_{2}}$, respectively.

$$
\begin{align*}
\zeta_{\chi, q^{w_{2}}, \varepsilon^{w_{2}}}\left(s, w_{1} x+\frac{w_{1}}{w_{2}} i\right) & =[2]_{q^{w_{2}}} \sum_{n=0}^{\infty} \frac{(-1)^{n} \chi(n) \varepsilon^{w_{2} n} q^{w_{2} n}}{\left[n+w_{1} x+\frac{w_{1}}{w_{2}} i\right]_{q^{w_{2}}}^{s}} \\
& =[2]_{q^{w_{2}}}\left[w_{2}\right]_{q}^{s} \sum_{n=0}^{\infty} \frac{(-1)^{n} \chi(n) \varepsilon^{w_{2} n} q^{w_{2} n}}{\left[w_{1} w_{2} x+w_{1} i+w_{2} n\right]_{q}^{s}} \tag{2.1}
\end{align*}
$$

Since for any non-negative integer n and odd positive integer w_{1}, there exist unique non-negative integer r, j such that $m=w_{1} r+j$ with $0 \leq j \leq w_{1}-1$. So, the equation (2.1) can be written as

$$
\begin{align*}
& \zeta_{\chi, q^{w_{2}}, \varepsilon^{w_{2}}}\left(s, w_{1} x+\frac{w_{1}}{w_{2}} i\right) \\
& =[2]_{q^{w_{2}}}\left[w_{2}\right]_{q}^{s} \sum_{\substack{w_{1} d r+j=0 \\
0 \leq j \leq w_{1} d-1}}^{\infty} \frac{(-1)^{w_{1} d r+j} \chi\left(w_{1} d r+j\right) \varepsilon^{w_{2}\left(w_{1} d r+j\right)} q^{w_{2}\left(w_{1} d r+j\right)}}{\left[w_{1} w_{2} d r+w_{1} w_{2} x+w_{1} i+w_{2} j\right]_{q}^{s}} \tag{2.2}\\
& =[2]_{q^{w_{2}}}\left[w_{2}\right]_{q}^{s} \sum_{j=0}^{w_{1} d-1} \sum_{r=0}^{\infty} \frac{(-1)^{j} \chi(j) \varepsilon^{w_{2}\left(w_{1} d r+j\right)} q^{w_{2}\left(w_{1} d r+j\right)}}{\left[w_{1} w_{2}(d r+x)+w_{1} i+w_{2} j\right]_{q}^{s}} .
\end{align*}
$$

In similarly, we obtain

$$
\begin{align*}
\zeta_{\chi, q^{w_{1}}, \varepsilon^{w_{1}}}\left(s, w_{2} x+\frac{w_{2}}{w_{1}} j\right) & =[2]_{q^{w_{1}}} \sum_{n=0}^{\infty} \frac{(-1)^{n} \chi(n) \varepsilon^{w_{1} n} q^{w_{1} n}}{\left[n+w_{2} x+\frac{w_{2}}{w_{1}} j\right]_{q^{w_{1}}}^{s}} \\
& =[2]_{q^{w_{1}}}\left[w_{1}\right]_{q}^{s} \sum_{n=0}^{\infty} \frac{(-1)^{n} \chi(n) \varepsilon^{w_{1} n} q^{w_{1} n}}{\left[w_{1} w_{2} x+w_{1} n+w_{2} j\right]_{q}^{s}} \tag{2.3}
\end{align*}
$$

Using the method in (2.2), we obtain

$$
\begin{align*}
& \zeta_{\chi, q^{w_{1}}, \zeta^{w_{1}}}\left(s, w_{2} x+\frac{w_{2}}{w_{1}} j\right) \\
& =[2]_{q^{w_{1}}}\left[w_{1}\right]_{q}^{s} \sum_{\substack{w_{2} d r+i=0 \\
0 \leq i \leq w_{2} d-1}}^{\infty} \frac{(-1)^{w_{2} d r+i} \chi\left(w_{2} d r+i\right) \varepsilon^{w_{1}\left(w_{2} d r+i\right)} q^{w_{1}\left(w_{2} d r+i\right)}}{\left[w_{1} w_{2} d r+w_{1} w_{2} x+w_{1} i+w_{2} j\right]_{q}^{s}} \tag{2.4}\\
& =[2]_{q^{w_{1}}}\left[w_{1}\right]_{q}^{s} \sum_{i=0}^{w_{2} d-1} \sum_{r=0}^{\infty} \frac{(-1)^{i} \chi(i) \varepsilon^{w_{1}\left(w_{2} d r+i\right)} q^{w_{1}\left(w_{2} d r+i\right)}}{\left[w_{1} w_{2}(d r+x)+w_{1} i+w_{2} j\right]_{q}^{s}}
\end{align*}
$$

By (2.2) and (2.4), we obtain

$$
\begin{align*}
& \sum_{i=0}^{w_{2} d-1}[2]_{q^{w_{1}}}\left[w_{1}\right]_{q}^{s}(-1)^{i} \chi(i) \varepsilon^{w_{1} i} q^{w_{1} i} \zeta_{\chi, q^{w_{2}}, \varepsilon^{w_{2}}}\left(s, w_{1} x+\frac{w_{1}}{w_{2}} i\right) \\
= & \sum_{j=0}^{w_{1} d-1}[2]_{q^{w_{2}}}\left[w_{2}\right]_{q}^{s}(-1)^{j} \chi(j) \varepsilon^{w_{2} j} q^{w_{2} j} \zeta_{\chi, q^{w_{1}}, \varepsilon^{w_{1}}}\left(s, w_{2} x+\frac{w_{2}}{w_{1}} j\right) \tag{2.5}
\end{align*}
$$

Next, we obtain the symmetric results by using definition and theorem of the generalized twisted q-Euler polynomials.

Theorem 2.2. Let χ be Dirichlet's character with conductor $d \in \mathbb{N}$ with $d \equiv$ $1(\bmod 2)$ and ε be the r-th root of unity. For $w_{1}, w_{2} \in \mathbb{N}$ with $w_{1} \equiv 1(\bmod 2)$, $w_{2} \equiv 1(\bmod 2), i, j$ and n be non-negative integer, we obtain

$$
\begin{aligned}
& \frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \sum_{i=0}^{w_{2} d-1}(-1)^{i} \chi(i) \varepsilon^{w_{1} i} q^{w_{1} i} E_{n, \chi, q^{w_{2}, \varepsilon^{w_{2}}}}\left(w_{1} x+\frac{w_{1}}{w_{2}} i\right) \\
& =\frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{q}^{n}} \sum_{j=0}^{w_{1} d-1}(-1)^{j} \chi(j) \varepsilon^{w_{2} j} q^{w_{2} j} E_{n, \chi, q^{w_{1}}, \varepsilon^{w_{1}}}\left(w_{2} x+\frac{w_{2}}{w_{1}} j\right) .
\end{aligned}
$$

Proof. By substitute $w_{1} x+\frac{w_{1} i}{w_{2}}$ for x in Theorem 1.2 and replace q and ε by $q^{w_{2}}$ and $\varepsilon^{w_{2}}$, respectively, we derive

$$
\begin{align*}
& E_{n, \chi, q^{w_{2}}, \varepsilon^{w_{2}}}\left(w_{1} x+\frac{w_{1}}{w_{2}} i\right) \\
& =[2]_{q^{w_{2}}} \sum_{m=0}^{\infty}(-1)^{m} \chi(m) \varepsilon^{w_{2} m} q^{w_{2} m}\left[w_{1} x+\frac{w_{1}}{w_{2}} i+m\right]_{q^{w_{2}}}^{n} \tag{2.6}\\
& =\frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{q}^{n}} \sum_{m=0}^{\infty}(-1)^{m} \chi(m) \varepsilon^{w_{2} m} q^{w_{2} m}\left[w_{1} w_{2} x+w_{1} i+w_{2} m\right]_{q}^{n} .
\end{align*}
$$

Since for any non-negative integer m and odd positive integer w_{1}, there exist unique non-negative integer r, j such that $m=w_{1} r+j$ with $0 \leq j \leq w_{1}-1$.

Hence, the equation (2.6) is written as

$$
\begin{align*}
& E_{n, \chi, q^{w_{2}}, \varepsilon^{w_{2}}}\left(w_{1} x+\frac{w_{1}}{w_{2}} i\right) \\
& =\frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{q}^{n}} \sum_{\substack{w_{1} d r+j=0 \\
0 \leq j \leq w_{1} d-1}}^{\infty}(-1)^{w_{1} d r+j} \chi\left(w_{1} d r+j\right) \varepsilon^{w_{2}\left(w_{1} d r+j\right)} q^{w_{2}\left(w_{1} d r+j\right)} \tag{2.7}\\
& \quad \times\left[w_{1} w_{2} x+w_{1} i+w_{2}\left(w_{1} d r+j\right)\right]_{q}^{n} \\
& =\frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{q}^{n}} \sum_{i=0}^{w_{1} d-1} \sum_{r=0}^{\infty}(-1)^{w_{1} d r+j} \chi(j) \varepsilon^{w_{2}\left(w_{1} d r+j\right)} q^{w_{2}\left(w_{1} d r+j\right)} \\
& \quad \times\left[w_{1} w_{2}(x+d r)+w_{1} i+w_{2} j\right]_{q}^{n} .
\end{align*}
$$

In similar, we obtain

$$
\begin{align*}
& E_{n, \chi, q^{w_{1}}, \zeta^{w_{1}}}\left(w_{2} x+\frac{w_{2}}{w_{1}} j\right) \\
& =[2]_{q^{w_{1}}} \sum_{m=0}^{\infty}(-1)^{m} \chi(m) \varepsilon^{w_{1} m} q^{w_{1} m}\left[w_{2} x+\frac{w_{2}}{w_{1}} j+m\right]_{q^{w_{1}}}^{n} \tag{2.8}\\
& =\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \sum_{m=0}^{\infty}(-1)^{m} \chi(m) \varepsilon^{w_{1} m} q^{w_{1} m}\left[w_{1} w_{2} x+w_{2} j+w_{1} m\right]_{q}^{n},
\end{align*}
$$

and

$$
\begin{align*}
& E_{n, \chi, q^{w_{1}, \varepsilon^{w_{1}}}}\left(w_{2} x+\frac{w_{2}}{w_{1}} j\right) \\
& =\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \sum_{\substack{w_{2} d r+i=0 \\
0 \leq i \leq w_{2} d-1}}^{\infty}(-1)^{w_{2} d r+i} \chi\left(w_{2} d r+i\right) \varepsilon^{w_{1}\left(w_{2} d r+i\right)} q^{w_{1}\left(w_{2} d r+i\right)} \tag{2.9}\\
& \times\left[w_{1} w_{2} x+w_{2} j+w_{1}\left(w_{2} d r+i\right)\right]_{q}^{n} \\
& =\frac{[2]_{q^{w}}}{\left[w_{1}\right]_{q}^{n}} \sum_{i=0}^{w_{2} d-1} \sum_{r=0}^{\infty}(-1)^{w_{2} d r+i} \chi(i) \varepsilon^{w_{1}\left(w_{2} d r+i\right)} q^{w_{1}\left(w_{2} d r+i\right)} \\
& \times\left[w_{1} w_{2}(x+d r)+w_{1} i+w_{2} j\right]_{q}^{n}
\end{align*}
$$

It follows from the above equation that

$$
\begin{align*}
& \frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \sum_{i=0}^{w_{2} d-1}(-1)^{i} \chi(i) \varepsilon^{w_{1} i} q^{w_{1} i} E_{n, \chi, q^{w_{2}}, \varepsilon^{w_{2}}}\left(w_{1} x+\frac{w_{1}}{w_{2}} i\right) \\
& =\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{q}^{n}} \sum_{j=0}^{w_{1} d-1} \sum_{i=0}^{w_{2} d-1} \sum_{r=0}^{\infty}(-1)^{i+j} \chi(i) \chi(j) \varepsilon^{w_{1} w_{2} d r+w_{1} i+w_{2} j} \tag{2.10}\\
& \left.\quad \times q^{w_{1} w_{2} d r+w_{1} i+w_{2} j}\left[w_{1} w_{2}(x+d r)+w_{1} i+w_{2} j\right)\right]_{q}^{n} \\
& =\frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{q}^{n}} \sum_{j=0}^{w_{1} d-1}(-1)^{j} \chi(j) \varepsilon^{w_{2} j} q^{w_{2} j} E_{n, \chi, q^{w_{1}, \varepsilon^{w_{1}}}}\left(w_{2} x+\frac{w_{2}}{w_{1}} j\right) .
\end{align*}
$$

From (2.7), (2.8), (2.9) and (2.10), the proof of the Theorem 2.2 is completed.

By (1.2) and Theorem 2.2, we have the following theorem.
Theorem 2.3. Let i, j and n be non-negative integers. For $w_{1}, w_{2} \in \mathbb{N}$ with $w_{1} \equiv 1(\bmod 2), w_{2} \equiv 1(\bmod 2)$, we have

$$
\begin{aligned}
& {[2]_{q^{w_{1}}} \sum_{k=0}^{n}\binom{n}{k}\left[w_{1}\right]_{q}^{k}\left[w_{2}\right]_{q}^{n-k} E_{n-k, \chi, q^{w_{2}}, \varepsilon^{w_{2}}}\left(w_{1} x\right) } \\
& \times \sum_{i=0}^{w_{2} d-1}(-1)^{i} \chi(i) \varepsilon^{w_{1} i} q^{(1+n-k) w_{1} i}[i]_{q^{w_{1}}}^{k} \\
&=[2]_{q^{w_{2}}} \sum_{k=0}^{n}\binom{n}{k}\left[w_{1}\right]_{q}^{n-k}\left[w_{2}\right]_{q}^{k} E_{n-k, \chi, q^{w_{1}}, \varepsilon^{w_{1}}}\left(w_{2} x\right) \\
& \times \sum_{j=0}^{w_{1} d-1}(-1)^{j} \chi(j) \varepsilon^{w_{2} j} q^{(1+n-k) w_{2} j}[j]_{q^{w_{2}}}^{k}
\end{aligned}
$$

Proof. After some calculations, we have

$$
\begin{align*}
& \frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \sum_{i=0}^{w_{2} d-1}(-1)^{i} \chi(i) \varepsilon^{w_{1} i} q^{w_{1} i} E_{n, \chi, q^{w_{2}}, \varepsilon^{w_{2}}}\left(w_{1} x+\frac{w_{1}}{w_{2}} i\right) \\
&=\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{q}^{n}} \sum_{k=0}^{n}\binom{n}{k} {\left[\frac{w_{1}}{w_{2}}\right]_{q^{w_{2}}}^{k} E_{n-k, \chi, q^{w_{2}}, \varepsilon^{w_{2}}}\left(w_{1} x\right) } \tag{2.11}\\
& \times \sum_{i=0}^{w_{2} d-1}(-1)^{i} \chi(i) \varepsilon^{w_{1} i} q^{(1+n-k) w_{1} i}[i]_{q^{w_{1}}}^{k}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{q}^{n}} \sum_{j=0}^{w_{1} d-1}(-1)^{j} \chi(j) \varepsilon^{w_{2} j} q^{w_{2} j} E_{n, \chi, q^{w_{2}}, \varepsilon^{w_{2}}}\left(w_{2} x+\frac{w_{2}}{w_{1}} j\right) \\
&=\frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{q}^{n}} \sum_{k=0}^{n}\binom{n}{k} {\left[\frac{w_{1}}{w_{2}}\right]_{q^{w_{1}}}^{k} E_{n-k, \chi, q^{w_{1}}, \varepsilon^{w_{1}}}\left(w_{2} x\right) } \tag{2.12}\\
& \times \sum_{j=0}^{w_{1} d-1}(-1)^{j} \chi(j) \varepsilon^{w_{2} j} q^{(1+n-k) w_{2} j}[j]_{q^{w_{2}}}^{k} .
\end{align*}
$$

By (2.11), (2.12) and Theorem 2.2, we obtain that

$$
\begin{aligned}
& {[2]_{q^{w_{1}}} \sum_{k=0}^{n}\binom{n}{k} \frac{1}{\left[w_{1}\right]_{q}^{n-k}\left[w_{2}\right]_{q}^{k}} E_{n-k, \chi, q^{w_{2}}, \varepsilon^{w_{2}}}\left(w_{1} x\right) } \\
& \times \sum_{i=0}^{w_{2} d-1}(-1)^{i} \chi(i) \varepsilon^{w_{1} i} q^{(1+n-k) w_{1} i}[i]_{q^{w_{1}}}^{k} \\
&=[2]_{q^{w_{2}}} \sum_{k=0}^{n}\binom{n}{k} \frac{1}{\left[w_{1}\right]_{q}^{k}\left[w_{2}\right]_{q}^{n-k}} E_{n-k, \chi, q^{w_{1}, \varepsilon^{w_{1}}}\left(w_{2} x\right)} \\
& \times \sum_{j=0}^{w_{1} d-1}(-1)^{j} \chi(j) \varepsilon^{w_{2} j} q^{(1+n-k) w_{2} j}[j]_{q^{w_{2}}}^{k} .
\end{aligned}
$$

Hence, we have above theorem.
By Theorem 2.3, we have the interesting symmetric identity for generalized twisted q-Euler numbers in complex field.

Corollary 2.4. For $w_{1}, w_{2} \in \mathbb{N}$ with $w_{1} \equiv 1(\bmod 2), w_{2} \equiv 1(\bmod 2)$, we have

$$
\begin{aligned}
& {[2]_{q^{w_{1}}} \sum_{k=0}^{n}\binom{n}{k}\left[w_{1}\right]_{q}^{k}\left[w_{2}\right]_{q}^{n-k} E_{n-k, \chi, q^{w_{2}, \varepsilon^{w_{2}}}}} \\
& \\
& \times \sum_{i=0}^{w_{2} d-1}(-1)^{i} \chi(i) \varepsilon^{w_{1} i} q^{(1+n-k) w_{1} i}[i]_{q^{w_{1}}}^{k} \\
& =[2]_{q^{w_{2}}} \sum_{k=0}^{n}\binom{n}{k}\left[w_{1}\right]_{q}^{n-k}\left[w_{2}\right]_{q}^{k} E_{n-k, \chi, q^{w_{1}, \varepsilon^{w_{1}}}} \\
&
\end{aligned}
$$

References

1. N.S. Jung, C.S. Ryoo, Symmetric identities for twisted q-Euler zeta functions, J. Appl. Math. \& Informatics 33 (2015), 649-656.
2. J.Y. Kang, C.S. Ryoo, On Symmetric Property for q-Genocchi Polynomials and Zeta Function, Int. Journal of Math. Analysis 8 (2014), 9-16.
3. Yuan He, Symmetric identities for Carlitz's q-Bernoulli numbers and polynomials, Advances in Difference Equations 246 (2013), 10 pages.
4. D. Kim, T. Kim, S.-H. Lee, J.-J. Seo, Symmetric Identities of the q-Euler Polynomials, Adv. Studies Theor. Phys. 7 (2014), 1149-1155.
5. T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (2007), 15-27.
6. B.A. Kupershmidt, Reflection symmetries of q-Bernoulli polynomials, J. Nonlinear Math. Phys. 12 (2005), 412-422.
7. C.S. Ryoo, On the Barnes type multiple q-Euler polynomials twisted by ramified roots of unity, Proc. Jangjeon Math. Soc. 13 (2010), 255-263.
8. C.S. Ryoo, A note on the weighted q-Euler numbers and polynomials, Advan. Stud. Contemp. Math. 21 (2011), 47-54.
9. C.S. Ryoo, Some Identities of Symmetry for Carlitz's Twisted q-Euler Polynomials Associated with p-Adic q-Integral on \mathbb{Z}_{p}, Int. Journal of Math. Analysis 9 (2015), 1747 1753.
10. C.S. Ryoo, Analytic Continuation of Euler Polynomials and the Euler Zeta Function, Discrete Dynamics in Nature and Society 2014 (2014), Article ID 568129, 6 pages.
11. C.S. Ryoo, A Note on the Reflection Symmetries of the Genocchi polynomials, J. Appl. Math. \& Informatics 27 (2009), 1397-1404.
N.S. Jung received Ph.D. degree from Hannam University. Her research interests are analytic number theory and p-adic functional analysis.
Department of Mathematics, Hannam University, Daejeon, 306-791, Korea.
e-mail: jns4235@nate.com
C.S. Ryoo received Ph.D. degree from Kyushu University. His research interests focus on the numerical verification method, scientific computing and p-adic functional analysis.

Department of Mathematics, Hannam University, Daejeon, 306-791, Korea.
e-mail: ryoocs@hnu.kr

[^0]: Received September 20, 2015. Revised November 4, 2015. Accepted November 11, 2015 * Corresponding author.
 © 2016 Korean SIGCAM and KSCAM

