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1. Introduction

The Euler numbers and polynomials possess many interesting properties in
many areas of mathematics and physics. Many mathematicians have studied
in the area of various q-extensions of Euler polynomials and numbers (see [1-
11]). Recently, Y. Hu investigated several identities of symmetry for Carlitz’s
q-Bernoulli numbers and polynomials in complex field (see [3]). D. Kim et al.
[4] derived some identities of symmetry for Carlitz’s q-Euler numbers and poly-
nomials in complex field. J.Y. Kang and C.S. Ryoo studied some identities of
symmetry for q-Genocchi polynomials (see [2]). In [1], we obtained some iden-
tities of symmetry for Carlitz’s twisted q-Euler zeta function in complex field.
In this paper, we establish some interesting symmetric identities for generalized
twisted q-Euler zeta functions and generalized ] twisted q-Euler polynomials in
complex field. If we take χ = 1 in all equations of this article, then [1] are the
special case of our results. Throughout this paper we use the following nota-
tions. By N we denote the set of natural numbers, Z denotes the ring of rational
integers, Q denotes the field of rational numbers, C denotes the set of complex
numbers, and Z+ = N ∪ {0}. We use the following notation:

[x]q =
1− qx

1− q
(see [1, 2, 3, 4]).
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Note that limq→1[x] = x. We assume that q ∈ C with |q| < 1. Let r be a positive
integer, and let ε be the r-th root of unity. Let χ be Dirichlet’s character
with conductor d ∈ N with d ≡ 1(mod2). Then the generalized twisted q-
Euler polynomials associated with associated with χ, En,χ,q,ε, are defined by
the following generating function

Fχ,q,ε(t, x) = [2]q

∞∑
n=0

(−1)nqnεnχ(n)e[x+n]qt =

∞∑
n=0

En,χ,q,ε(x)
tn

n!
(1.1)

and their values at x = 0 are called the generalized twisted q-Euler numbers and
denoted En,χ,q,ε.

By (1.1) and Cauchy product, we obtain

En,χ,q,ε(x) =
n∑

l=0

(
n

l

)
qlx[x]n−l

q El,χ,q,ε, (1.2)

with the usual convention about replacing (Eχ,q,ε)
n by En,χ,q,ε.

By using (1.1), we note that

dk

dtk
Fχ,q,ε(t, x)

∣∣∣∣
t=0

= [2]q

∞∑
n=0

χ(n)(−1)nεnqn[n+ x]kq , (k ∈ N). (1.3)

By (1.3), we are now ready to define the Hurwitz type of the generalized twisted
q-Euler zeta functions.

Definition 1.1. Let s ∈ C and x ∈ R with x ̸= 0,−1,−2, . . .. We define

ζχ,q,ε(s, x) = [2]q

∞∑
n=1

(−1)nχ(n)εnqn

[n+ x]sq
. (1.4)

Note that ζχ,q,ε(s, x) is a meromorphic function on C. Relation between
ζχ,q,ε(s, x) and Ek,χ,q,ε(x) is given by the following theorem.

Theorem 1.2. For k ∈ N, we get

ζχ,q,ε(−k, x) = Ek,χ,q,ε(x). (1.5)

Observe that ζχ,q,ε(−k, x) function interpolates Ek,χ,q,ε(x) polynomials at
non-negative integers. If χ = 1, then ζχ,q,ε(s, x) = ζq,ε(s, x) (see [1]).

2. Symmetric property of generalized twisted q-Euler zeta functions

In this section, by using the similar method of [1, 2, 3, 4, 9], expect for obvious
modifications, we give some symmetric identities for generalized twisted q-Euler
polynomials and generalized twisted q-Euler zeta functions. Let w1, w2 ∈ N with
w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2).
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Theorem 2.1. Let χ be Dirichlet’s character with conductor d ∈ N with d ≡
1(mod 2) and ε be the r-th root of unity. For w1, w2 ∈ N with w1 ≡ 1 (mod 2),
w2 ≡ 1 (mod 2), we obtain

w2d−1∑
i=0

[2]qw1 [w1]
s
q(−1)iχ(i)εw1iqw1iζχ,qw2 ,εw2

(
s, w1x+

w1

w2
i

)

=

w1d−1∑
j=0

[2]qw2 [w2]
s
q(−1)jχ(j)εw2jqw2jζχ,qw1 ,εw1

(
s, w2x+

w1

w2
j

)
.

Proof. Observe that [xy]q = [x]qy [y]q for any x, y ∈ C. In Definition 1.1, we
derive next result by substitute w1x + w1

w2
i for x in and replace q and ε by qw2

and εw2 , respectively.

ζχ,qw2 ,εw2 (s, w1x+
w1

w2
i) = [2]qw2

∞∑
n=0

(−1)nχ(n)εw2nqw2n

[n+ w1x+ w1

w2
i]sqw2

= [2]qw2 [w2]
s
q

∞∑
n=0

(−1)nχ(n)εw2nqw2n

[w1w2x+ w1i+ w2n]sq
.

(2.1)

Since for any non-negative integer n and odd positive integer w1, there exist
unique non-negative integer r, j such that m = w1r+ j with 0 ≤ j ≤ w1− 1. So,
the equation (2.1) can be written as

ζχ,qw2 ,εw2 (s, w1x+
w1

w2
i)

= [2]qw2 [w2]
s
q

∞∑
w1dr+j=0
0≤j≤w1d−1

(−1)w1dr+jχ(w1dr + j)εw2(w1dr+j)qw2(w1dr+j)

[w1w2dr + w1w2x+ w1i+ w2j]sq

= [2]qw2 [w2]
s
q

w1d−1∑
j=0

∞∑
r=0

(−1)jχ(j)εw2(w1dr+j)qw2(w1dr+j)

[w1w2(dr + x) + w1i+ w2j]sq
.

(2.2)

In similarly, we obtain

ζχ,qw1 ,εw1 (s, w2x+
w2

w1
j) = [2]qw1

∞∑
n=0

(−1)nχ(n)εw1nqw1n

[n+ w2x+ w2

w1
j]sqw1

= [2]qw1 [w1]
s
q

∞∑
n=0

(−1)nχ(n)εw1nqw1n

[w1w2x+ w1n+ w2j]sq
.

(2.3)
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Using the method in (2.2), we obtain

ζχ,qw1 ,ζw1 (s, w2x+
w2

w1
j)

= [2]qw1 [w1]
s
q

∞∑
w2dr+i=0
0≤i≤w2d−1

(−1)w2dr+iχ(w2dr + i)εw1(w2dr+i)qw1(w2dr+i)

[w1w2dr + w1w2x+ w1i+ w2j]sq

= [2]qw1 [w1]
s
q

w2d−1∑
i=0

∞∑
r=0

(−1)iχ(i)εw1(w2dr+i)qw1(w2dr+i)

[w1w2(dr + x) + w1i+ w2j]sq
.

(2.4)

By (2.2) and (2.4), we obtain

w2d−1∑
i=0

[2]qw1 [w1]
s
q(−1)iχ(i)εw1iqw1iζχ,qw2 ,εw2

(
s, w1x+

w1

w2
i

)

=

w1d−1∑
j=0

[2]qw2 [w2]
s
q(−1)jχ(j)εw2jqw2jζχ,qw1 ,εw1

(
s, w2x+

w2

w1
j

)
.

(2.5)

�

Next, we obtain the symmetric results by using definition and theorem of the
generalized twisted q-Euler polynomials.

Theorem 2.2. Let χ be Dirichlet’s character with conductor d ∈ N with d ≡
1(mod 2) and ε be the r-th root of unity. For w1, w2 ∈ N with w1 ≡ 1 (mod 2),
w2 ≡ 1 (mod 2), i, j and n be non-negative integer, we obtain

[2]qw1

[w1]nq

w2d−1∑
i=0

(−1)iχ(i)εw1iqw1iEn,χ,qw2 ,εw2

(
w1x+

w1

w2
i

)

=
[2]qw2

[w2]nq

w1d−1∑
j=0

(−1)jχ(j)εw2jqw2jEn,χ,qw1 ,εw1

(
w2x+

w2

w1
j

)
.

Proof. By substitute w1x+
w1i
w2

for x in Theorem 1.2 and replace q and ε by qw2

and εw2 , respectively, we derive

En,χ,qw2 ,εw2

(
w1x+

w1

w2
i

)
= [2]qw2

∞∑
m=0

(−1)mχ(m)εw2mqw2m

[
w1x+

w1

w2
i+m

]n
qw2

=
[2]qw2

[w2]nq

∞∑
m=0

(−1)mχ(m)εw2mqw2m[w1w2x+ w1i+ w2m]nq .

(2.6)

Since for any non-negative integer m and odd positive integer w1, there exist
unique non-negative integer r, j such that m = w1r + j with 0 ≤ j ≤ w1 − 1.
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Hence, the equation (2.6) is written as

En,χ,qw2 ,εw2

(
w1x+

w1

w2
i

)
=

[2]qw2

[w2]nq

∞∑
w1dr+j=0
0≤j≤w1d−1

(−1)w1dr+jχ(w1dr + j)εw2(w1dr+j)qw2(w1dr+j)

× [w1w2x+ w1i+ w2(w1dr + j)]nq

=
[2]qw2

[w2]nq

w1d−1∑
i=0

∞∑
r=0

(−1)w1dr+jχ(j)εw2(w1dr+j)qw2(w1dr+j)

× [w1w2(x+ dr) + w1i+ w2j]
n
q .

(2.7)

In similar, we obtain

En,χ,qw1 ,ζw1

(
w2x+

w2

w1
j

)
= [2]qw1

∞∑
m=0

(−1)mχ(m)εw1mqw1m

[
w2x+

w2

w1
j +m

]n
qw1

=
[2]qw1

[w1]nq

∞∑
m=0

(−1)mχ(m)εw1mqw1m[w1w2x+ w2j + w1m]nq ,

(2.8)

and

En,χ,qw1 ,εw1

(
w2x+

w2

w1
j

)
=

[2]qw1

[w1]nq

∞∑
w2dr+i=0
0≤i≤w2d−1

(−1)w2dr+iχ(w2dr + i)εw1(w2dr+i)qw1(w2dr+i)

× [w1w2x+ w2j + w1(w2dr + i)]nq

=
[2]qw1

[w1]nq

w2d−1∑
i=0

∞∑
r=0

(−1)w2dr+iχ(i)εw1(w2dr+i)qw1(w2dr+i)

× [w1w2(x+ dr) + w1i+ w2j]
n
q .

(2.9)



112 N.S. Jung and C.S. Ryoo

It follows from the above equation that

[2]qw1

[w1]nq

w2d−1∑
i=0

(−1)iχ(i)εw1iqw1iEn,χ,qw2 ,εw2

(
w1x+

w1

w2
i

)

=
[2]qw1

[w1]nq

[2]qw2

[w2]nq

w1d−1∑
j=0

w2d−1∑
i=0

∞∑
r=0

(−1)i+jχ(i)χ(j)εw1w2dr+w1i+w2j

× qw1w2dr+w1i+w2j [w1w2(x+ dr) + w1i+ w2j)]
n
q

=
[2]qw2

[w2]nq

w1d−1∑
j=0

(−1)jχ(j)εw2jqw2jEn,χ,qw1 ,εw1

(
w2x+

w2

w1
j

)
.

(2.10)

From (2.7), (2.8), (2.9) and (2.10), the proof of the Theorem 2.2 is completed. �

By (1.2) and Theorem 2.2, we have the following theorem.

Theorem 2.3. Let i, j and n be non-negative integers. For w1, w2 ∈ N with
w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), we have

[2]qw1

n∑
k=0

(
n

k

)
[w1]

k
q [w2]

n−k
q En−k,χ,qw2 ,εw2 (w1x)

×
w2d−1∑
i=0

(−1)iχ(i)εw1iq(1+n−k)w1i[i]kqw1

= [2]qw2

n∑
k=0

(
n

k

)
[w1]

n−k
q [w2]

k
qEn−k,χ,qw1 ,εw1 (w2x)

×
w1d−1∑
j=0

(−1)jχ(j)εw2jq(1+n−k)w2j [j]kqw2 .

Proof. After some calculations, we have

[2]qw1

[w1]nq

w2d−1∑
i=0

(−1)iχ(i)εw1iqw1iEn,χ,qw2 ,εw2

(
w1x+

w1

w2
i

)

=
[2]qw1

[w1]nq

n∑
k=0

(
n

k

)[
w1

w2

]k
qw2

En−k,χ,qw2 ,εw2 (w1x)

×
w2d−1∑
i=0

(−1)iχ(i)εw1iq(1+n−k)w1i[i]kqw1 ,

(2.11)
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and

[2]qw2

[w2]nq

w1d−1∑
j=0

(−1)jχ(j)εw2jqw2jEn,χ,qw2 ,εw2

(
w2x+

w2

w1
j

)

=
[2]qw2

[w2]nq

n∑
k=0

(
n

k

)[
w1

w2

]k
qw1

En−k,χ,qw1 ,εw1 (w2x)

×
w1d−1∑
j=0

(−1)jχ(j)εw2jq(1+n−k)w2j [j]kqw2 .

(2.12)

By (2.11), (2.12) and Theorem 2.2, we obtain that

[2]qw1

n∑
k=0

(
n

k

)
1

[w1]
n−k
q [w2]kq

En−k,χ,qw2 ,εw2 (w1x)

×
w2d−1∑
i=0

(−1)iχ(i)εw1iq(1+n−k)w1i[i]kqw1

= [2]qw2

n∑
k=0

(
n

k

)
1

[w1]kq [w2]
n−k
q

En−k,χ,qw1 ,εw1 (w2x)

×
w1d−1∑
j=0

(−1)jχ(j)εw2jq(1+n−k)w2j [j]kqw2 .

Hence, we have above theorem. �

By Theorem 2.3, we have the interesting symmetric identity for generalized
twisted q-Euler numbers in complex field.

Corollary 2.4. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), we have

[2]qw1

n∑
k=0

(
n

k

)
[w1]

k
q [w2]

n−k
q En−k,χ,qw2 ,εw2

×
w2d−1∑
i=0

(−1)iχ(i)εw1iq(1+n−k)w1i[i]kqw1

= [2]qw2

n∑
k=0

(
n

k

)
[w1]

n−k
q [w2]

k
qEn−k,χ,qw1 ,εw1

×
w1d−1∑
j=0

(−1)jχ(j)εw2jq(1+n−k)w2j [j]kqw2 .
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