• 제목/요약/키워드: Symmetric Load

Search Result 226, Processing Time 0.019 seconds

Position and load-swing control of a 2-dimensional overhead crane (2차원 천정크레인의 위치 및 이송물의 흔들림제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1683-1693
    • /
    • 1997
  • In this paper, a new nonlinear dynamic model is derived for a 2-dimensional overhead crane based on a new definition of 2-degree-of-freedom swing angle, and a new anti-swing control law is proposed for the crane. The dynamic model and control law take simultaneous travel and traverse motions of the crane into consideration. The model is first linearized for small motions of the crane load about the vertical stable equilibrium. Then the model becomes decoupled and symmetric with respect to the travel and traverse axes of the crane. From this result, a decoupled anti-swing control law is proposed based on the linearized model via the loop shaping and root locus methods. This decoupled method guarantees not only fast damping of load-swing but also zero steady state position error with optimal transient response for the 2-dimensional motion of the crane. Finally, the proposed control method is evaluated by controlling the simultaneous travel and traverse motions of a 2-dimensional prototype overhead crane. The effectiveness of the proposed control method is then proven by the experimental results.

Buckling analysis of sandwich beam reinforced by GPLs using various shear deformation theories

  • Hanifehlou, Sona;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.427-432
    • /
    • 2020
  • In this research, the buckling analysis of sandwich beam with composite reinforced by graphene platelets (GPLs) in two face sheets is investigated. Three type various porosity patterns including uniform, symmetric and asymmetric are considered through the thickness direction of the core. Also, the top and bottom face sheets layers are considered composite reinforced by GPLs/CNTs based on Halpin-Tsai micromechanics model and extended mixture rule, respectively. Based on various shear deformation theories such as Euler-Bernoulli, Timoshenko and Reddy beam theories, the governing equations of equilibrium using minimum total potential energy are obtained. It is seen that the critical buckling load decreases with an increase in the porous coefficient, because the stiffness of sandwich beam reduces. Also, it is shown that the critical buckling load for asymmetric distribution is lower than the other cases. It can see that the effect of graphene platelets on the critical buckling load is higher than carbon nanotubes. Moreover, it is seen that the difference between carbon nanotubes and graphene platelets for Reddy and Euler-Bernoulli beam theories is most and least, respectively.

Development of a Multi-Component Waterproof Type Force Sensor Devised with Column Elements Under Eccentric Load (편심하중 요소를 활용한 방수형 다분력 검력계 개발)

  • Hyochul Kim;Changhwan Shin;Seongsun Rhyu;Younjae Ham
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.200-207
    • /
    • 2024
  • A multi-component force sensor has been developed to measure force and moment components in high-speed flow media for submerged models. The size of the test model is determined based on the Reynolds number of the model at the test speed and expected blockage effect. A two-component force sensor unit has been created by assembling pairs of column elements arranged symmetrically under an eccentric load. The six-component force sensor is constructed with symmetric arrangements of two-component force sensor units in a rectangular plane. The signals generated from the strain gauges attached to the surface of the elements can be converted into force signals. The performance of the waterproof six-component force sensor has been evaluated through calibration. A simplified interference decomposition procedure has been introduced to increase the accuracy of measurement.

FINITE ELEMENT ANALYSIS OF STRESSES AND DEFLECTIONS INDUCED BY FIXED PARTIAL DENTURE USING ENDOSTEAL IMPLANT (골내 임프란트를 이용한 고정성 국소의치 하에서 변위 및 응력에 관한 유한요소법적 분석)

  • Choi, Su-Ho;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.233-248
    • /
    • 1991
  • The purpose of this study was to qunatatively analyze the stress patterns induced in the abutment, superstructure, supporting bone and to determine the deflection of abutment and superstructure by appling occlusal force to natural teeth supported fixed prostheses and implant-supported fixed prostheses. The analysis has been conducted by using the two dimensional finite element method. The implant and natural tooth-supported bridge has a first molar pontic supported by mandibular second bicuspid and implant posterior retainer, which were rigidly(Model A) or flexible(Model B). The natural teeth-supported bridge has a first molar pontic supported by mandibular second bicuspid and second molar, which were rigidly splinted together(Model C). 63.5kg(Load P1) of localized load on central fossa of first molar pontic and 24kg(Load P2) of distributed load on each occlusal surface were applied respectively. 1. The coronal portion of premolar pontic and posterior abutment in fixed partial denture deflected inferiorly in order of Model B, Model C and Model A under Load P1 and Load P2. 2. Mesial displacement of the coronal portion of premolar showed in Model A, Model B and Model C under Load P1, but mesial displacement of that in Model B and distal displacement of that in Model A and Model C showed under Load P2. 3. Mesial displacement of the coronal portion of the pontic and distal displacement of the coronal portion of posterior abutment showed in Model A, Model B and Model C under Load P1 and Load P2. Displacement in the case of Model B was greater than that of Model A and Model C. 4. In the case Model A under Load P1 and Load P2, high stress apically was concentrated in the mesiocervical portion of the posterior abutment than in the disto-cervical portion of the premolar. 5. In the case of Model B under Load P1 and Load P2 high stress was concentrated in the case of the premolar than in that of posterior abutment and high stress especially was concentrated in the connected portion of pontic and posterior abutment. 6. In the case of Model C under Load P1 and Load P2, high stress was concentrated in the distal area of the cornal portion of premolar and the mesial area of the coronal portion of posterior abutment, and stress pattern was anteroposterially symmetric around the pontic. 7. Load P1 and Load P2 compared, stress magnitude was different but stress pattern was similar in Model A, Model B and Model C. 8. Under Load P1 and P2, stress magnitude in the mesial distal portion and the portion of root apex of the posterior abutment was in order of Model B, Model A and Model C.

  • PDF

A Dynamic Bandwidth Tuning Mechanism for DQDB in Client-Server Traffic Environments (클라이언트-서버 트래픽 환경에서 분산-큐 이중-버스의 동적 대역폭 조절 방식)

  • Kim, Jeong-Hong;Kwon, Oh-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11
    • /
    • pp.3479-3489
    • /
    • 2000
  • Most of the study on fairness control method for Distributed-Queue Dual-Bus(DQDB) have been performed under specific load types such as equal probability load types or symmetric load types. On Web-based internet enviroments client-server load types are more practical traffic patlerns than specrfic load types. In this paper, an effiective fairness control method to distribute DQDR network bandwidth fairly to all stations under a client-server load is proposed. In order to implement a dynamic bandwidth timing capabihty needed to distribute the bandwidth fairty at heavy loads, the proposed method uses two pararnetexs, one is an access hrnit to legulate each station's packet transmission and the other is the number of extra emply slots that are yielded to downstream stations. In point of implementation this mechanism is simpler and easier than Bandwidth Tuning Mechanism(BTM) that uses an intermediate pattern and an adptation function. Simulation results show that it outperforms othen mecharusms.

  • PDF

Application of Direct Analysis Method Considering Initial Imperfection Limitation (초기변형 허용값을 고려한 직접해석법 적용)

  • Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.487-495
    • /
    • 2013
  • As the first step to suggest effective ways of using direct analysis method considering current situations of construction fields in Korea, analytical approach is used to verify direct analysis method which adapts initial imperfection limitation of Korean specification of building construction. The main analytical variables are size of frames, axial load ratio, axial load distribution, value of notional loads, location of notional loads, and applied method of notional loads. The results show that the use of initial imperfection limitation of Korean specification, L/700 is suitable, and the recommendable method to use direct analysis method is applied notional loads based on L/700 as minimum lateral load at each story, even if B2 is less than 1.5 and lateral loads exist.

Investigation of Strain Behaviour around the Tip of Model Pile - Comparison between Laboratory Model Test and Numerical Analysis - (모형말뚝 선단부 주변의 변형률 거동 분석 - 실내모형실험과 수치해석 비교 -)

  • Lee, Yong Joo;Lee, Jung-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4C
    • /
    • pp.159-167
    • /
    • 2012
  • In this study, laboratory model pile-load test and finite element analysis were carried out to compare and analyze the strain behaviour around the model pile tip. In order to simulate the pile load, both the LCM(load control method)and DCM(displacement control method) were introduced to determine which one is appropriate for the FE simulation. In contrast to the previous simulation method, two interface elements around the model pile were used to consider the slip effect in the finite element analysis and its results were compared to the model test. Through this study it was found that the degree of non-associated flow was a dominant factor in terms of numerical solution convergence. In addition, an improved FE mesh was required to obtain the symmetric distribution of the maximum shear strain contour.

In-Plane Buckling Behavior of Fixed Shallow Parabolic Arches (고정지점을 갖는 낮은 포물선 아치의 면내 좌굴거동)

  • Moon, Jiho;Yoon, Ki-Yong;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.79-87
    • /
    • 2008
  • This paper investigates the in-plane stability of fixed shallow arches. The shape of the arches is parabolic and the uniformly distributed load is used in the study. The nonlinear governing equilibrium equation of the general arch is adopted to derive the incremental form of the load-displacement relationship and the buckling load of the fixed shallow arches. From the results, it is found that buckling modes (symmetric or asymmetric) of the arches are closely related to the dimensionless rise H, which is the function of slenderness ratio and the rise to span ratio of such arches. Moreover, the threshold of different buckling modes and buckling load for fixed shallow arches are proposed. A series of finite element analysis are conducted and then compared with proposed ones. From the comparative study, the proposed formula provides the good prediction of the buckling load of fixed shallow arches.

Buckling of thick deep laminated composite shell of revolution under follower forces

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour;Hemmati, Mona
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.59-91
    • /
    • 2016
  • Laminated composite shells are commonly used in various engineering applications including aerospace and marine structures. In this paper, using semi-analytical finite strip method, the buckling behavior of laminated composite deep as well as thick shells of revolution under follower forces which remain normal to the shell is investigated. The stiffness caused by pressure is calculated for the follower forces subjected to external fibers in thick shells. The shell is divided into several closed strips with alignment of their nodal lines in the circumferential direction. The governing equations are derived based on first-order shear deformation theory which accounts for through thickness-shear flexibility. Displacements and rotations in the middle surface of shell are approximated by combining polynomial functions in the meridional direction as well as truncated Fourier series with an appropriate number of harmonic terms in the circumferential direction. The load stiffness matrix which accounts for variation of loads direction will be derived for each strip of the shell. Assembling of these matrices results in global load stiffness matrix which may be un-symmetric. Upon forming linear elastic stiffness matrix called constitutive stiffness matrix, geometric stiffness matrix and load stiffness matrix, the required elements for the second step analysis which is an eigenvalue problem are provided. In this study, different parameter effects are investigated including shell geometry, material properties, and different boundary conditions. Afterwards, the outcomes are compared with other researches. By considering the results of this article, it can be concluded that the deformation-dependent pressure assumption can entail to decrease the calculated buckling load in shells. This characteristic is studied for different examples.

A Study on the Dynamic Post-Buckling Behavior of the Plane Frame Structures Subjected to Circulatory Forces (Circulatory Force를 받는 평면(平面)뼈대 구조물(構造物)의 동적(動的) 후좌굴(後座屈) 거동(擧動)에 관한 연구(硏究))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.13-24
    • /
    • 1988
  • A geometrically nonlinear analysis procedure for plane frame structures in order to study the static and dynamic post-buckling behavior of these structures subjected to circulatory forces is presented. The elastic and geometric stiffness matrices, the mass matrix and load correction stiffness matrix are derived from the extended virtual work principle, where the tangent stiffness matrix becomes non-symmetric due to the effects of non-conservative circulatory forces. The dynamic analysis of plane frame structures subjected to circulatory forces in pre- and post-buckling ranges is carried out by integrating the equations of motion directly by the numerically stable Newmark method. Numerical results are presented in order to demonstrate the vality and accuracy of the proposed procedure.

  • PDF