• Title/Summary/Keyword: Symmetric Laminates

Search Result 41, Processing Time 0.018 seconds

Bi-axial and shear buckling of laminated composite rhombic hypar shells

  • Chaubey, Abhay K.;Raj, Shubham;Tiwari, Pratik;Kumar, Ajay;Chakrabarti, Anupam;Pathak, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.227-241
    • /
    • 2020
  • The bi-axial and shear buckling behavior of laminated hypar shells having rhombic planforms are studied for various boundary conditions using the present mathematical model. In the present mathematical model, the variation of transverse shear stresses is represented by a second-order function across the thickness and the cross curvature effect in hypar shells is also included via strain relations. The transverse shear stresses free condition at the shell top and bottom surfaces are also satisfied. In this mathematical model having a realistic second-order distribution of transverse shear strains across the thickness of the shell requires unknown parameters only at the reference plane. For generality in the present analysis, nine nodes curved isoparametric element is used. So far, there exists no solution for the bi-axial and shear buckling problem of laminated composite rhombic (skew) hypar shells. As no result is available for the present problem, the present model is compared with suitable published results (experimental, FEM, analytical and 3D elasticity) and then it is extended to analyze bi-axial and shear buckling of laminated composite rhombic hypar shells. A C0 finite element (FE) coding in FORTRAN is developed to generate many new results for different boundary conditions, skew angles, lamination schemes, etc. It is seen that the dimensionless buckling load of rhombic hypar increases with an increase in c/a ratio (curvature). Between symmetric and anti-symmetric laminations, the symmetric laminates have a relatively higher value of dimensionless buckling load. The dimensionless buckling load of the hypar shell increases with an increase in skew angle.

Buckling load optimization of laminated composite stepped columns

  • Topal, Umut
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.107-111
    • /
    • 2017
  • This paper deals with critical buckling load optimization of symmetric angle-ply laminated stepped flat columns under axial compression load. The design objective is the maximization of the critical buckling load and the design variable is the fiber orientations in the layers of the laminates. The classical laminate plate theory is used for the finite element solution of the laminated stepped flat columns. The modified feasible direction (MFD) method is used for the optimization routine. For this purpose, a program based on FORTRAN is exploited. Finally, the optimization results are presented for width ratios (b/B), ratios of fillet radius ($r_1/r_2$), aspect ratios (L/B) and boundary conditions. The results are presented in graphical and tabular forms and the results are compared.

A Study on the Energy Release Rate of Delaminated Composite Laminates (층간분리된 복합적층판의 에너지 방출률에 관한 연구)

  • Cheong, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.97-107
    • /
    • 1995
  • Global postbuckling analysis is accomplished for one-dimensional and two-dimensional delaminations. A new finite element model, which can be used to model the global postbuckling analysis of one-dimensional and two-dimensional delaminations, is presented. In order to calculate the strain energy release rate, geometrically nonlinear analysis is accomplished, and the incremental crack closure technique is introduced. To check the effectiveness of the finite element models and the incremental crack closure technique, the simplified closed-form sloution for a through-the-width delamination with plane strain condition is derived and compared with the finite element result. The finite element results show good agreement with the closed-foul1 solutions. The present method was extended to calculate the strain energy release rate for two-dimensional delamination. For a symmetric circular delamination, the strain energy release rate shows great variation along the delamination front. and the delamination growth appears to occur perpendicular to the loading direction.

  • PDF

Optimisation of symmetric laminates with internal line supports for maximum buckling load

  • Walker, M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.633-641
    • /
    • 1998
  • Finite element solutions are presented for the optimal design of symmetrically laminated rectangular plates with various types of internal line supports. These plates are subject to a combination of simply supported, clamped and free boundary conditions. The design objective is the maximisation of the biaxial buckling load. This is achieved by determining the fibre orientations optimally with the effects of bending-twisting coupling taken into account. The finite element method coupled with an optimisation routine is employed in analysing and optimising the laminated plate designs. The effect of internal line support type and boundary conditions on the optimal ply angles and the buckling load are numerically studied. The laminate behavior with respect to fibre orientation changes significantly in the presence of internal line supports as compared to that of a laminate where there is no internal supporting. This change in behavior has significant implications for design optimisation as the optimal values of design variables with or without internal supporting differ substantially.

Buckling of Bimodulus Composite Thin Plate (이중탄성계수 복합재료판의 좌굴)

  • 이영신;김종천
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1520-1534
    • /
    • 1994
  • A new analytical method for the prediction of the buckling behavior of laminated plates consisting of layers having different properties in tension and compression, so called bimodulus, is proposed in this paper. Buckling analysis of bimodular composite laminated paltes are performed with the results reduced from plate bending analysis. The governing equations of bimodular plates are based on the first shear deformation theory. As a case study, bending and buckling of simply supported, multilayered, symmetric, antisymmtric, and specially orthotropic laminates under uniformly distributed lateral load for bending analysis and in-plane load for buckling are considered. The results of the bending analysis are compared with the previous papers. Then, the fundamental critical buckling loads and buckling modes are calculated for the various bimodular composite rectangular thin plates.

Thermal Residual Stresses and Spring back Effects on the Frequency Selective Surface Embedded Composite Laminates (주파수 선택막이 삽입된 복합재 평판의 잔류 열응력과 스프링 백 효과)

  • Park, Kyoung-Mi;Seo, Yun-Seok;Chun, Heoung-Jae;Hong, Ic-Pyo;Park, Yong-Bae;Kim, Yun-Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.475-481
    • /
    • 2013
  • The residual stresses occur in the Frequency Selective Surface(FSS) embedded hybrid composite structures after co-curing due to mismatch among the coefficient of thermal expansions and stiffness values between the FSS and composite materials. The spring backs occur due to these residual stresses. Therefore, in this paper, the spring-backs caused by residual stresses in FSS embedded composite structures were studied with considering effect of symmetric and unsymmetric stacking sequence of composite laminates.

Minimum cost design of overhead crane beam with box section strengthened by CFRP laminates

  • Kovacs, Gyorgy;Farkas, Jozsef
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.475-481
    • /
    • 2017
  • An overhead travelling crane structure of two doubly symmetric welded box beams is designed for minimum cost. The rails are placed over the inner webs of box beams. The following design constraints are considered: local buckling of web and flange plates, fatigue of the butt K weld under rail and fatigue of fillet welds joining the transverse diaphragms to the box beams, fatigue of CFRP (carbon fibre reinforced plastic) laminate, deflection constraint. For the formulation of constraints the relatively new standard for cranes EN 13001-3-1 (2010) is used. To fulfill the deflection constraint CFRP strengthening should be used. The application of CFRP materials in strengthening of steel and concrete structures are widely used in civil engineering applications due to their unique advantages. In our study, we wanted to show how the mechanical properties of traditional materials can be improved by the application of composite materials and how advanced materials and new production technologies can be applied. In the optimization the following cost parts are considered: material, assembly and welding of the steel structure, material and fabrication cost of CFRP strengthening. The optimization is performed by systematic search using a MathCAD program.

Efficient finite element model for dynamic analysis of laminated composite beam

  • Naushad Alam, M.;Upadhyay, Nirbhay Kr.;Anas, Mohd.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.471-488
    • /
    • 2012
  • An efficient one dimensional finite element model has been presented for the dynamic analysis of composite laminated beams, using the efficient layerwise zigzag theory. To meet the convergence requirements for the weak integral formulation, cubic Hermite interpolation is used for the transverse displacement ($w_0$), and linear interpolation is used for the axial displacement ($u_0$) and shear rotation (${\psi}_0$). Each node of an element has four degrees of freedom. The expressions of variationally consistent inertia, stiffness matrices and the load vector are derived in closed form using exact integration. The formulation is validated by comparing the results with the 2D-FE results for composite symmetric and sandwich beams with various end conditions. The employed finite element model is free of shear locking. The present zigzag finite element results for natural frequencies, mode shapes of cantilever and clamped-clamped beams are obtained with a one-dimensional finite element codes developed in MATLAB. These 1D-FE results for cantilever and clamped beams are compared with the 2D-FE results obtained using ABAQUS to show the accuracy of the developed MATLAB code, for zigzag theory for these boundary conditions. This comparison establishes the accuracy of zigzag finite element analysis for dynamic response under given boundary conditions.

Pressure loading, end- shortening and through- thickness shearing effects on geometrically nonlinear response of composite laminated plates using higher order finite strip method

  • Sherafat, Mohammad H.;Ghannadpour, Seyyed Amir M.;Ovesy, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.677-691
    • /
    • 2013
  • A semi-analytical finite strip method is developed for analyzing the post-buckling behavior of rectangular composite laminated plates of arbitrary lay-up subjected to progressive end-shortening in their plane and to normal pressure loading. In this method, all the displacements are postulated by the appropriate harmonic shape functions in the longitudinal direction and polynomial interpolation functions in the transverse direction. Thin or thick plates are assumed and correspondingly the Classical Plate Theory (CPT) or Higher Order Plate Theory (HOPT) is applied. The in-plane transverse deflection is allowed at the loaded ends of the plate, whilst the same deflection at the unloaded edges is either allowed to occur or completely restrained. Geometric non-linearity is introduced in the strain-displacement equations in the manner of the von-Karman assumptions. The formulations of the finite strip methods are based on the concept of the principle of the minimum potential energy. The Newton-Raphson method is used to solve the non-linear equilibrium equations. A number of applications involving isotropic plates, symmetric and unsymmetric cross-ply laminates are described to investigate the through-thickness shearing effects as well as the effect of pressure loading, end-shortening and boundary conditions. The study of the results has revealed that the response of the composite laminated plates is particularly influenced by the application of the Higher Order Plate Theory (HOPT) and normal pressure loading. In the relatively thick plates, the HOPT results have more accuracy than CPT.

Electromagnetic Interference Shielding of Carbon Fibers-Reinforced Composites (탄소섬유강화 복합재료의 전자파 차폐특성)

  • 심환보;서민강;박수진
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.860-868
    • /
    • 2000
  • In this work, the electro-magnetic interference (EMI) characteristics of PAN-based carbon fibers-reinforced composites are investigated with difference to manufactural parameters, i.e., fiber grade, fiber orientation angle, and laminating method. As a result, EMI shielding effectiveness (SE) of the composites greatly depends on a fiber orientation in composite angle. Especially, the fiber grade affects SE of composites in case of orientation angle of 0$^{\circ}$. Then the SE become greater as the change of electric character according to the arrangement directions, i.e., electrical anisotropy in the same constituent materials. This is due to the skin effect which is represented in the surface of electro-magnetic wave in high-frequency range. In all cases according to lamination methods, the composites represents SE of 83~98% over. Whereas, in symmetric and unsymmetric laminate structures, the SE decreases slightly as the laminate angles of composites increases. On the contrary. the repeating laminates structure shows the opposite tendency. Especially, 90$^{\circ}$ repeating laminate structure shows the SE more than 90% over the measuring frequency.

  • PDF