• 제목/요약/키워드: Symbol-rate

Search Result 546, Processing Time 0.076 seconds

Design of a High Speed QPSK/16-QAM Receiver Chip (고속 QPSK/16-QAM 수신기 칩 설계)

  • Park, Ki-Hyuk;Sunwoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4B
    • /
    • pp.237-244
    • /
    • 2003
  • This paper presents the design of a QPSK/16-QAM downstreams receiver chip. The proposed chip consists of a blind equalizer, a timing recovery block and a carrier recovery block. The blind equalizer uses a DFE sturucture using CMA(Constant Module Algorithm). The symbol timing recovery uses the modified parabolic interpolator. The decision-directed carrier recovery is used to remove the carrier frequency offset, phase offset and phase jitter. The implemented LMDS receiver can support four data rates, 10, 20, 30 and 40 Mbps and can accommodate the symbol rate up to 10 Mbaud. This symbol rate is faster than existing QAM receivers.

OFDM Channel Estimation with Jammed Pilot Excision Method under Narrow-Band Jamming (협대역 재밍환경에서 재밍된 파일럿 제거 방법을 이용한 OFDM시스템의 채널추정에 관한 연구)

  • Han, Myeong-Su;Yu, Tak-Ki;Kim, Ji-Hyung;Kwak, Kyung-Chul;Han, Seung-Youp;Hong, Dae-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.166-173
    • /
    • 2007
  • In Orthogonal Frequency Division Multiplexing (OFDM) systems, Narrow-Band Jamming (NBJ) over pilot tones used for channel estimation degrades the system performance. In this paper, we propose a new jammed pilot detection and elimination algorithm to overcome this problem. Moreover, the average Mean-Squared Error (MSE) on one OFDM symbol both under jammed and removed pilot subcarrier is analyzed. And then, the Symbol Error Rate (SER) performance of the channel estimation scheme using the proposed algorithm is evaluated by simulation. We can confirm that the channel estimator with the proposed algorithm improves the channel estimation performance at a high jamming power.

A Novel Adaptive Turbo Receiver for Large-Scale MIMO Communications

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Tsai, Bo-Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.2998-3017
    • /
    • 2018
  • Massive (large-scale) MIMO (multiple-input multiple-output) is one of the key technologies in next-generation wireless communication systems. This paper proposes a high-performance low-complexity turbo receiver for SC-FDMA (single-carrier frequency-division multiple access) based MMIMO (massive MIMO) systems. Because SC-FDMA technology has the desirable characteristics of OFDMA (orthogonal frequency division multiple access) and the low PAPR (peak-to-average power ratio) of SC transmission schemes, the 3GPP LTE (long-term evolution) has adopted it as the uplink transmission to meet the demand high data rate and low error rate performance. The complexity of computing will be increased greatly in base station with massive MIMO (MMIMO) system. In this paper, a low-complexity adaptive turbo equalization receiver based on normalized minimal symbol-error-rate for MMIMO SC-FDMA system is proposed. The proposed receiver is with low complexity than that of the conventional turbo MMSE (minimum mean square error) equalizer and is also with better bit error rate (BER) performance than that of the conventional adaptive turbo MMSE equalizer. Simulation results confirm the effectiveness of the proposed scheme.

Logic gate implementation of constant amplitude coded CS/CDMA transmitter (정포락선 부호화된 CS-CDMA 송신기의 논리 게이트를 이용한 구현)

  • 김성필;류형직;김명진;오종갑
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.281-284
    • /
    • 2003
  • Multi-code CDMA is an appropriate scheme for transmitting high rate data. However, dynamic range of the signal is large, and power amplifier with good linearity is required. Code select CDMA (CS/CDMA) is a variation of multi-code CDMA scheme that ensures constant amplitude transmission. In CS/CDMA input data selects multiple orthogonal codes, and sum of these selected codes are MPSK modulated to convert multi-level symbol into different carrier phases. CS/CDMA system employs level clipping to limit the number of levels at the output symbol to avoid hish density of signal constellation. In our previous work we showed that by encoding input data of CS/CDMA amplitude of the output symbol can be made constant. With this coding scheme, level clipping is not necessary and the output signal can be BPSK modulated for transmission. In this paper we show that the constant amplitude coded(CA-) CS/CDMA transmitter can be implemented using only logic gates, and the hardware complexity is very low. In the proposed transmitter architecture there is no apparent redundant encoder block which plays a major role in the constant amplitude coded CS/CDMA.

  • PDF

Symbol Error Rates of QAM with Selection Combining Space Diversity in Rayleigh Fading Channels (레일레이 페이딩채널에서 선택성 결합방식의 공간다이버시티를 이용한 QAM의 심벌오율)

  • 김창주;김영수;정구영;문재경;이혁재
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.3
    • /
    • pp.75-79
    • /
    • 1995
  • This paper derives the symbol error rate (SER) for quadrature amplitude modulation (QAM) with L-fold selection combining (SC) space diversity in Rayleigh fading channel. No analysis has been reported yet for theoretical SER performance of QAM with SC space diversity in Rayleigh fading channels. The formula is obtained by averaging the symbol error probability of M-ary QAM in an additive white Gaussian noise channel over the distribution of the maximum signal-to-noise ratio among all of the diversity channels. By giving the order of diversity, L, and the number of signal points, M, we have been able to obtain the SER performance of QAM with general SC space diversity. Analytical results show that the probability of error decreases with the order of diversity. We can also see that the incremental diversity gain per additional diversity decreases as the number of branches becomes larger.

  • PDF

IQ Unbalance Compensation for OPDM Based Wireless LANs (무선랜 시스템에서의 IQ 부정합 보상 기법 연구)

  • Kim, Ji-Ho;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.905-912
    • /
    • 2007
  • This paper proposes an efficient estimation and compensation scheme of IQ imbalance for OFDM-based WLAN systems in the presence of symbol timing error. Since the conventional scheme assumes perfect time synchronization, the criterion of the scheme used to derive the estimation of IQ imbalance is inadequate in the presence of the symbol timing error and the system performance is seriously degraded. New criterion and compensation scheme considering the effect of symbol timing error are proposed. With the proposed scheme, the IQ imbalance can be almost perfectly eliminated in the presence of symbol timing error. The bit error rate performance of the proposed scheme is evaluated by the simulation. In case of 54 Mbps transmission mode in IEEE 802.11a system, the proposed scheme achieves a SNR gain of 4.3dB at $BER=2{\cdot}10^{-3}$. The proposed compensation algorithm of IQ imbalance is implemented using Verilog HDL and verified. The proposed IQ imbalance compensator is composed of 74K logic gates and 6K bits memory from the synthesis result using 0.18um CMOS technology.

Gaussian Interpolation GPSAM Method to Overcome Fast Fading in High Speed Mobile Environments (고속 모바일 환경에서 fast 페이딩 극복을 위한 가우시안 보간 GPSAM 기법)

  • Kim, Jeong-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3482-3486
    • /
    • 2013
  • In the case of the Pilot Symbol Assisted Modulation (PSAM) method predicting and compensating amplitude and phases caused on fading channels, there can be severe performance deterioration by Doppler spread on fast fading channels. In this paper, the fading compensation method suggested so as to improve occurring problems as well as analyze them. Doppler spread is the major cause of the bit error rate(BER) performance deterioration. Compared to the existing PSAM method, the more performance deterioration occurs, the larger Doppler spread appears but performance shows well its less $10^{-2}BER$ performance than the existing PSAM method in the suggested method whereas the existing PSAM method has about $10^{-1}BER$ its considerable performance deterioration that caused by Doppler spread within a symbol cycle with the level of delay wave interference.

Reference Symbol Arrangement in LTE OFDM Systems (LTE OFDM 시스템에서의 기준 심볼 배치)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2805-2812
    • /
    • 2015
  • For the purpose of estimation of time variant frequency selective transmission channels, reference symbols are usually employed. The bit error performance of LTE OFDM systems is analyzed in the case of LTE standard reference symbol arrangement. Results show that LTE OFDM system with this LTE reference symbol arrangement is robust against Doppler time variant fading. However, the performance of that system is degraded due to channel estimation error in frequency domain. An equidistant arrangement with a diamond shape structure of reference symbols, however having 4 subcarriers distance in frequency domain, is suggested for the optimal channel estimation.

SER Analysis of QAM with Space Diversity in Rayleigh Fading Channels

  • Kim, Chang-Joo;Kim, Young-Su;Jeong, Goo-Young;Mun, Jae-Kyung;Lee, Hyuck-Jae
    • ETRI Journal
    • /
    • v.17 no.4
    • /
    • pp.25-35
    • /
    • 1996
  • This paper derives the symbol error probability for quadrature amplitude modulation(QAM) with L-fold space diversity in Rayleigh fading channels. Two combining techniques, maximal ratio combining(MRC) and selection combining(SC), are considered. The formula for MRC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an additive white Gaussian noise(AWGN) channel over a chi-square distribution with 2L degrees of freedom. The obtained formula overcomes the limitations of the earlier work, which has been limited only to deriving the symbol error rate(SER) of QAM with two branch MRC space diversity. The formula for SC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an AWGN channel over the distribution of the maximum signal-to noise ratio among all of the diversity channels for SC space diversity has been reported yet. Analytical results show that the probability of error decreases with the order of diversity gain per additional branch decreases as the number of branches becomes larger. On the other hand, the performance of 16 QAM with MRC becomes much better than that of SC as the number of branches becomes larger. By giving the order of diversity, L, and the number of signal points, M, we have been able to obtain the SER performance of QAM with general space diversity. These results can be used to determine the order of diversity to achieve the desired SER in land mobile communication system employing QAM modulation.

  • PDF

Symbol Synchronization of OFDM Systems using Signs of Preamble Signals (훈련신호의 부호를 사용한 OFDM 시스템의 심볼동기)

  • 황진권
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5A
    • /
    • pp.502-513
    • /
    • 2004
  • This paper proposes a symbol synchronization method in the IEEE 802.11a wireless OPDM system, which uses only signs of the in-phase and the quadrature signals in the short preamble. The short preamble is sampled with 2 tines of Nyquist sampling rate and both of the autocorrelation and the cross-relation are used in the proposed method. This method has some advantages that the ACG (Automatic Gain Control) can be processed concurrently during the short preamble and its implementation is not much complicated. The proposed symbol synchronization method is verified through simulations on frequency offset, multi-path and white Gaussian noise.