• Title/Summary/Keyword: Symbol-rate

Search Result 546, Processing Time 0.025 seconds

A Relay Selection Scheme with Q-Learning (Q-Learning을 이용한 릴레이 선택 기법)

  • Jung, Hong-Kyu;Kim, Kwang-Yul;Shin, Yo-An
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.39-47
    • /
    • 2012
  • As a scheme to efficiently reduce the effects of multipath fading in next generation wireless communication systems, cooperative communication systems have recently come into the spotlight. Since these cooperative communication systems use cooperative relays with diverse fading coefficients to transmit information, having all relays participate in cooperative communication may result in unnecessary waste of resources, and thus relay selection schemes are required to efficiently use wireless resources. In this paper, we propose an efficient relay selection scheme through self-learning in cooperative wireless networks using Q-learning algorithm. In this scheme, we define states, actions and two rewards to achieve good SER (Symbol Error Rate) performance, while selecting a small number of cooperative relays. When these parameters are well-defined, we can obtain good performance. For demonstrating the superiority of the proposed Q-learning, We compared the proposed scheme with Q-learning and a relay selection scheme with a mathematical analysis. The simulation results show that, compared to a scheme that obtains optimum relays through a mathematical analysis, the proposed scheme uses resources efficiently by using smaller numbers of relays with comparable SER performance. According to these simulation results, the proposed scheme can be considered as a good attempt for future wireless communication.

The Performance Analysis of CCA Adaptive Equalization Algorithm for 16-QAM Signal (16-QAM 신호에 대한 CCA 적응 등화 알고리즘 성능 분석)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • This paper deals with the performance anlysis of CCA adaptive equalization algorithm, that is used for reduction of intersymbol interference at the receiving side which occurs in the time dispersive communication channel. Basically, this algorithm is borned for the solving phase unrecovery problem in the CMA equalizer, and the comines the concept of DDA (Decision Directed Algorithm) and RCA (Reduce Constellation Algorithm). The DDA has a stable convergence characteristics in unilevel signal, but not in the number of levels in multilevel signal such as QAM, so it has unstable problem. The RCA does not provide reliable initial convergence. And even after convergence, the equalization noise due to the steady state misadjustment exhibited by it is very high as compared to DDA. For the solving the abovemensioned point, the CCA adaptive eualization alogorithm has borned. In order to performance analysis of CCA algorithm, the recovered signal constellation that is the output of the equalizer, the convergence characteristic by the residual isi and MD (maximum distortion), the SER characteristic are used by computer simulation and it was compared with the DDA, RCA respectively. As a result of simulation, the DDA has superior performance than other algoithm, but it has a convergence unguarantee and unstability in the multilevel signal. In order to solving this problem, the CCA has more good performance than RCA in every performance index.

Noise Whitening Decision Feedback Equalizer for SC-FDMA Receivers (SC-FDMA 수신기를 위한 잡음 백색화 판정궤환 등화기)

  • Lee, Su-Kyoung;Park, Yong-Hyun;Seo, Bo-Seok
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.986-995
    • /
    • 2011
  • In this paper, we propose a noise whitening decision feedback equalizer for single carrier frequency division multiple access (SC-FDMA) receivers. SC-FDMA has the same advantage as that of orthogonal frequency division multiple access (OFDMA) in which the multipath effect can be removed easily, and also solves the problem of high peak to average power ratio (PAPR) which is the main drawback of OFDMA. Although SC-FDMA is a single carrier transmission scheme, a simple frequency domain linear equalizer (FD-LE) can be implemented as in OFDMA, which can dramatically reduce the equalizer complexity. Moreover, some residual intersymbol interference in the output of the FD-LE can be further removed by an additional nonlinear decision feedback equalizer (DFE) in time domain, because the time domain signal is a digitally modulated symbol. In the conventional DFE, however, the noise is not white at the input of the decision device and correspondingly the decision is not optimum. In this paper, we propose an improved DFE scheme for SC-FDMA systems where a linear noise whitening filter is inserted before the decision device of the conventional DFE scheme. Through computer simulations, we compare the bit error rate performance of the proposed DFE scheme with the conventional equalizers.

Performance of Radio Communication DS/CDMA System with Diversity Technique and BCH Coding under Impulsive Noise and Nakagami Fading (임펄스 잡음과 나카가미 페이딩이 존재할 때 다이버시티 기법과 오류정정 부호를 이용한 무선통신 DS/CDMA 시스템의 오율 특성)

  • 김지웅;강희조;이권현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.539-549
    • /
    • 1999
  • In this paper, the bit error rare (BER) performance of DS/CDMA DQPSK communication system in the presence of multi access interference, impulsive noise and Nakagami fading is investigated. The DS/CDMA DQPSK communication system adopts Maximum Ratio Combining (MRC) diversity reception and error correcting BCH code technique to enhance system performance. Using the derived error probability equation, the error rate performance of DS/CDMA DQPSK communication system has been evaluated and shown in figures to discuss as a function of impulsive index(A), Gaussian noise to impulsive noise power ratio($\Gamma$'), multi access interference(Κ), Nakagami fading parameter(m), the number of diversity branch (L), the number of error correction symbol (t), PN code sequence length(N) and $E_b/N_0$. The error performance of DS/CDMA-MDPSK signals improve by adopting MRC diversity and BCH(15,7) coding technique in the environment of impulsive noise plus Nagakami fading. From the results, we known that proposed system is affected by multi access interference, impulsive noise and Nakagami fading in radio communication system environment. Also, BER performance of DS/CDMA DQPSK communication system cam be improved increasing either the power of desired signal or the value of Gaussian noise to impulsive noise power ratio. And BCH(15,7) code technique is more effective to restrain the affection of multi access, interference, impulsive noise and Nakagami fading in DS/CDMA DQPSK communication system than MRC diversity reception technique.

  • PDF

A Performance Analysis of DF-DPD and DPD-RGPR (DF-DPD와 DPD-RGPR에 대한 성능 분석)

  • Jeong, Jin-Doo;Jin, Yong-Sun;Chong, Jong-Wha
    • 전자공학회논문지 IE
    • /
    • v.47 no.4
    • /
    • pp.39-47
    • /
    • 2010
  • This paper proposes a numerical analysis to prove that the performance of the differential phase detections (DPDs) with the decision feedback, such as the decision feedback DPD (DF-DPD) and the DPD with recursively generated phase reference (DPD-RGPR), approach the performance of the coherent detection with differential decoding. The conventional differential phase detection for M-ary DPSK can make the receiver architecture simple, while it can make the bit-error rate (BER) performance poor because of the previous noisy phase as a reference phase. To improve the BER performance of the conventional differential detection, multiple symbol differential detection methods, including DF-DPD and DPD-RGPR, have been proposed. However, the studies on the analysis and on the comparison of these methods have been little performed. Then, this paper mathematically intends to analyze and compare the performance of the DPDs with the decision feedback. The analysis results show that the DPDs with the decision feedback can have the performance equal to that of the coherent detection with differential decoding and be available for the noncoherent detection in the improved performance. Considering the hardware complexity, the DPD RGPR with the simple detection process by using the recursively generated phase reference can be more simply implemented than the DF-DPD based on the architecture whose complexity increases according to the increasing detection length.

Design of a New 3-D 16-ary Signal Constellation with Constant Envelope (상진폭 특성을 가지는 새로운 3차원 16진 신호성상도의 설계)

  • Choe, Chae-Cheol;Kang, Seog-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2149-2156
    • /
    • 2011
  • In this paper, design of a new 3-dimensional (3-D) 16-ary signal constellation with constant envelope is presented and analyzed. Unlike the conventional 16-ary constellations, all signal points of the new constellation are uniformly located on the surface of a sphere so that they have a unique amplitude level and a symmetrical structure. When average power of the constellations is normalized, the presented 16-ary constellation has around 11.4% increased minimum Euclidean distance (MED) as compared to the conventional ones that have non-constant envelope. As a result, a digital communication system which exploits the presented constellation has 1.2dB improved symbol error rate (SER). While signal points of the conventional constant-envelope constellation are not distributed uniformly on the surface of a sphere, those of the proposed constellation has a completely symmetric distribution. In addition, the new signal constellation has much lower computational complexity for practical implementation than the conventional one. Hence, the proposed 3-D 16-ary signal constellation is appropriate for the application to a communication system which strongly requires a constant-envelope characteristic.

Symbol Timing Alignment and Combining Technique in Rake Receiver for cdma2000 Systems (cdma2000 시스템용 레이크 수신기에서의 심볼 정렬 및 컴바이닝 기법)

  • Lee, Seong-Ju;Kim, Jae-Seok;Eo, Ik-Su;Kim, Gyeong-Su
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.1
    • /
    • pp.34-41
    • /
    • 2002
  • In the conventional rake receiver structure for the IS-95 CDMA system, each finger has its own time-deskew buffer or FIFO that aligns the multipath signals to the same timing reference in order to combine symbols. This architecture is not a burden to the rake receiver design mainly because of the small number and size of the buffers. However, the number and size of the buffers are significantly increased in the cdma2000 system which adopts multiple carriers and the small spreading gain for a higher rate in data services. In order to decrease the number of buffers, we propose a new model of the time-deskew buffers, which combines the symbols as well as realigns them at the same time. Our architecture reduces the hardware complexity of the buffers by about more than 60% and 70% compared with the conventional one when we consider each rake receiver has three and four independent fingers, respectively. Moreover, the proposed algorithm is very useful not only to the cdma2000 rake receiver but also to the receiver with many fingers in order to increase the BER performance.

Error Performance Analysis of Trellis Coded QPSK Signal with Reed-Solomon Coding and MRC Diversity Reception in Micro-Cellular System (마이크로 셀룰러 시스템에서 MRC 다이버시티와 Reed-Solomon 부호를 적용한 Trellis Coded QPSK 신호의 오율 해석)

  • 노재성;김영철;박기식;조성언;조성준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.427-438
    • /
    • 1998
  • The bit error rate(BER) performance of Trellis Coded QPSK signal in the presence of cochannel interference (CCI) and Rician fading is investigated. The trellis coded QPSK system adopts Maximum Ratio Combining (MRC) diversity reception and Reed-Solomon code to enhance system performance. Using the derived error probability equation, the error performance of trellis coded QPSK system has been evaluated and shown in figures to discuss as a function of signal power to noise power ratio (SNR), signal power to interference power ratio(SIR), direct to indirect signal power ratio ($K_R$), the number of diversity branch (M), the frame length of Reed-Solomon code (n), the number of error correction symbol (t), and the number of state of trellis encoder. From the results, we know that proposed system is affected by cochannel interference and fading in microcell environment. Also, BER performance of Trellis Coded QPSK system can be improved as increasing either the power of desired signal or the value of SIR. And the BER floor in microcellular system is caused by the cochannel interference and it occurs at high BER when SIR is low. And Reed-Solomon code (n=15, t=2) is more effective to restrain the affection of CCI and fading than MRC diversity reception (M=2).

  • PDF

Multiuser Bit-Interleaved Coded OFDM with Limited Feedback Infonnation (제한된 궤환정보를 이용한 다중사용자 BIC-OFDM)

  • Sung, Chang-Kyung;Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.107-114
    • /
    • 2008
  • In wireless access systems, there has been much interest in enhancing the performance of orthogonal frequency division multiplexing OFDM) in a frequency selective fading channel. If the channel is static and is perfectly known to both the transmitter and the receiver, the water-filling technique with adaptive modulation is known to be optimal. However, for OFDM systems, this requires intensive traffic overheads for reporting channel side information on all subcarriers to the transmitter In this paper, we propose an adaptive modulation and coding scheme for bit-interleaved coded OFDM (BIC-OFDM) for downlink packet transmissions with reduced feedback information. To minimize the feedback information, we employ a rate adaptation method based on the OFDM symbol rather than on each subcarrier. To illustrate the performance gap between the optimal water-filling and the proposed scheme, we will compare cutoff rates for both schemes. It is shown that the loss is less than 2dB while the proposed scheme significantly reduces the feedback payloads. Also, the OFDM system in multiuser environment with subcarrier grouping is considered. It is shown that by exploiting multiuser diversity the throughput of the proposed scheme approaches the channel outage capacity as the number of users and the number of subcarrier groups increase.

A 2×2 MIMO Spatial Multiplexing 5G Signal Reception in a 500 km/h High-Speed Vehicle using an Augmented Channel Matrix Generated by a Delay and Doppler Profiler

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.1-10
    • /
    • 2023
  • This paper proposes a method to extend Inter-Carrier Interference (ICI) canceling Orthogonal Frequency Division Multiplexing (OFDM) receivers for 5G mobile systems to spatial multiplexing 2×2 MIMO (Multiple Input Multiple Output) systems to support high-speed ground transportation services by linear motor cars traveling at 500 km/h. In Japan, linear-motor high-speed ground transportation service is scheduled to begin in 2027. To expand the coverage area of base stations, 5G mobile systems in high-speed moving trains will have multiple base station antennas transmitting the same downlink (DL) signal, forming an expanded cell size along the train rails. 5G terminals in a fast-moving train can cause the forward and backward antenna signals to be Doppler-shifted in opposite directions, so the receiver in the train may have trouble estimating the exact channel transfer function (CTF) for demodulation. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceller is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number n to receiver sub-carrier number l is generated. In case of n≠l, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 8 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, 2×2MIMO QPSK and 16QAM modulation schemes, BER (Bit Error Rate) improvement was observed when the number of taps in the multi-tap equalizer was set to 31 or more taps, at a moving speed of 500 km/h and in an 8-pass reverse doppler shift environment.